983 resultados para DENSITY PROBLEM
Resumo:
A set of hypersingular integral equations of a three-dimensional finite elastic solid with an embedded planar crack subjected to arbitrary loads is derived. Then a new numerical method for these equations is proposed by using the boundary element method combined with the finite-part integral method. According to the analytical theory of the hypersingular integral equations of planar crack problems, the square root models of the displacement discontinuities in elements near the crack front are applied, and thus the stress intensity factors can be directly calculated from these. Finally, the stress intensity factor solutions to several typical planar crack problems in a finite body are evaluated.
Resumo:
In the present paper, based on the theory of dynamic boundary integral equation, an optimization method for crack identification is set up in the Laplace frequency space, where the direct problem is solved by the author's new type boundary integral equations and a method for choosing the high sensitive frequency region is proposed. The results show that the method proposed is successful in using the information of boundary elastic wave and overcoming the ill-posed difficulties on solution, and helpful to improve the identification precision.
Resumo:
Fatigue testing was performed using a kind of triangular shaped specimen to obtain the characteristics of numerical density evolution for short cracks at the primary stage of fatigue damage. The material concerned is a structural alloy steel. The experimental results show that the numerical density of short cracks reaches the maximum value when crack length is slightly less than the average grain diameter, indicating grain boundary is the main barrier for short crack extension. Based on the experimental observations and related theory, the expressions for growth velocity and nucleation rate of short cracks have been proposed. With the solution to phase space conservation equation, the theoretical results of numerical density evolution for short cracks were obtained, which were in agreement with our experimental measurements.
Resumo:
In order to develop the ultra-large scale integration(ULSI), low pressure and high density plasma apparatus are required for etching and deposit of thin films. To understand critical parameters such as the pressure, temperature, electrostatic potential and energy distribution of ions impacting on the wafer, it is necessary to understand how these parameters are influenced by the power input and neutral gas pressure. In the present work, a 2-D hybrid electron fluid-particle ion model has been developed to simulate one of the high density plasma sources-an Electron Cyclotron Resonance (ECR) plasma system with various pressures and power inputs in a non-uniform magnetic field. By means of numerical simulation, the energy distributions of argon ion impacting on the wafer are obtained and the plasma density, electron temperature and plasma electrostatic potential are plotted in 3-D. It is concluded that the plasma density depends mainly on both the power input and neutral gas pressure. However, the plasma potential and electron temperature can hardly be affected by the power input, they seem to be primarily dependent on the neutral gas pressure. The comparison shows that the simulation results are qualitatively in good agreement with the experiment measurements.
Resumo:
This paper presents an exact analysis for high order asymptotic field of the plane stress crack problem. It has been shown that the second order asymptotic field is not an independent eigen field and should be matched with the elastic strain term of the first order asymptotic field. The second order stress field ahead of the crack tip is quite small compared with the first order stress field. The stress field ahead of crack tip is characterized by the HRR field. Hence the J integral can be used as a criterion for crack initiation.
Resumo:
A potential energy model is developed for turbulent entrainment in the absence of mean shear in a linearly stratified fluid. The relation between the entrainment distance D and the time t and the relation between dimensionless entrainment rate E and the local Richardson number are obtained. An experiment is made for examination. The experimental results are in good agreement with the model, in which the dimensionless entrainment distance D is given by DBAR = A(i)(SBAR)-1/4(fBAR)1/2(tBAR)1/8, where A(i) is the proportional coefficient, S is the dimensionless stroke, fBAR is the dimensionless frequency of the grid oscillation, tBAR the dimensionless time.
Resumo:
The elastic plane problem of collinear rigid lines under arbitrary loads is dealt with. Applying the Riemann-Schwarz symmetry principle integrated with the analysis of the singularity of complex stress functions, the general formulation is presented, and the closed-form solutions to several problems of practical importance are given, which include some published results as the special cases. Lastly the stress distribution in the immediate vicinity of the rigid line end is examined.
Resumo:
The effect of the particle cover over the density interface between two layers of fluids and of the suspended solid particles in the upper turbulcnt layer on the turbulent entrainment has been studied experimentally. The entrainment distance D is a function of the time of power: D=kt, where =0.200-0.130p. For suspended particles in the upper layer and pure 2-layer fluid is equal to 0.200, but the value of k for the suspended particles is smaller than that for the pure 2-layer fluid. The non-dimensional entrainment velocity is E=KRiln, where n=1.50+0.93 p. It is shown that the particle cover over the interface changes the power of Ril in the entrainment and hinders the turbulent entrainment. The variation rule of E for the suspended particles is the same as that for the pure 2-layer fluid, but the K value of the former is smaller than that of the latter. The turbulent mixing mechanism has been discussed.