1000 resultados para Cyclonic risk
Resumo:
This thesis examines collapse risk of tall steel braced frame buildings using rupture-to-rafters simulations due to suite of San Andreas earthquakes. Two key advancements in this work are the development of (i) a rational methodology for assigning scenario earthquake probabilities and (ii) an artificial correction-free approach to broadband ground motion simulation. The work can be divided into the following sections: earthquake source modeling, earthquake probability calculations, ground motion simulations, building response, and performance analysis.
As a first step the kinematic source inversions of past earthquakes in the magnitude range of 6-8 are used to simulate 60 scenario earthquakes on the San Andreas fault. For each scenario earthquake a 30-year occurrence probability is calculated and we present a rational method to redistribute the forecast earthquake probabilities from UCERF to the simulated scenario earthquake. We illustrate the inner workings of the method through an example involving earthquakes on the San Andreas fault in southern California.
Next, three-component broadband ground motion histories are computed at 636 sites in the greater Los Angeles metropolitan area by superposing short-period (0.2~s-2.0~s) empirical Green's function synthetics on top of long-period ($>$ 2.0~s) spectral element synthetics. We superimpose these seismograms on low-frequency seismograms, computed from kinematic source models using the spectral element method, to produce broadband seismograms.
Using the ground motions at 636 sites for the 60 scenario earthquakes, 3-D nonlinear analysis of several variants of an 18-story steel braced frame building, designed for three soil types using the 1994 and 1997 Uniform Building Code provisions and subjected to these ground motions, are conducted. Model performance is classified into one of five performance levels: Immediate Occupancy, Life Safety, Collapse Prevention, Red-Tagged, and Model Collapse. The results are combined with the 30-year probability of occurrence of the San Andreas scenario earthquakes using the PEER performance based earthquake engineering framework to determine the probability of exceedance of these limit states over the next 30 years.
Resumo:
There is a sparse number of credible source models available from large-magnitude past earthquakes. A stochastic source model generation algorithm thus becomes necessary for robust risk quantification using scenario earthquakes. We present an algorithm that combines the physics of fault ruptures as imaged in laboratory earthquakes with stress estimates on the fault constrained by field observations to generate stochastic source models for large-magnitude (Mw 6.0-8.0) strike-slip earthquakes. The algorithm is validated through a statistical comparison of synthetic ground motion histories from a stochastically generated source model for a magnitude 7.90 earthquake and a kinematic finite-source inversion of an equivalent magnitude past earthquake on a geometrically similar fault. The synthetic dataset comprises of three-component ground motion waveforms, computed at 636 sites in southern California, for ten hypothetical rupture scenarios (five hypocenters, each with two rupture directions) on the southern San Andreas fault. A similar validation exercise is conducted for a magnitude 6.0 earthquake, the lower magnitude limit for the algorithm. Additionally, ground motions from the Mw7.9 earthquake simulations are compared against predictions by the Campbell-Bozorgnia NGA relation as well as the ShakeOut scenario earthquake. The algorithm is then applied to generate fifty source models for a hypothetical magnitude 7.9 earthquake originating at Parkfield, with rupture propagating from north to south (towards Wrightwood), similar to the 1857 Fort Tejon earthquake. Using the spectral element method, three-component ground motion waveforms are computed in the Los Angeles basin for each scenario earthquake and the sensitivity of ground shaking intensity to seismic source parameters (such as the percentage of asperity area relative to the fault area, rupture speed, and risetime) is studied.
Under plausible San Andreas fault earthquakes in the next 30 years, modeled using the stochastic source algorithm, the performance of two 18-story steel moment frame buildings (UBC 1982 and 1997 designs) in southern California is quantified. The approach integrates rupture-to-rafters simulations into the PEER performance based earthquake engineering (PBEE) framework. Using stochastic sources and computational seismic wave propagation, three-component ground motion histories at 636 sites in southern California are generated for sixty scenario earthquakes on the San Andreas fault. The ruptures, with moment magnitudes in the range of 6.0-8.0, are assumed to occur at five locations on the southern section of the fault. Two unilateral rupture propagation directions are considered. The 30-year probabilities of all plausible ruptures in this magnitude range and in that section of the fault, as forecast by the United States Geological Survey, are distributed among these 60 earthquakes based on proximity and moment release. The response of the two 18-story buildings hypothetically located at each of the 636 sites under 3-component shaking from all 60 events is computed using 3-D nonlinear time-history analysis. Using these results, the probability of the structural response exceeding Immediate Occupancy (IO), Life-Safety (LS), and Collapse Prevention (CP) performance levels under San Andreas fault earthquakes over the next thirty years is evaluated.
Furthermore, the conditional and marginal probability distributions of peak ground velocity (PGV) and displacement (PGD) in Los Angeles and surrounding basins due to earthquakes occurring primarily on the mid-section of southern San Andreas fault are determined using Bayesian model class identification. Simulated ground motions at sites within 55-75km from the source from a suite of 60 earthquakes (Mw 6.0 − 8.0) primarily rupturing mid-section of San Andreas fault are considered for PGV and PGD data.
Resumo:
Chronic Lymphocytic Leukemia (CLL) is the most frequent leukemia of adults in Western countries and shows a ~8.5-fold increased relative risk in first-degree relatives. Up to date several studies have identified low-penetrance susceptibility alleles in CLL. Nevertheless, these studies scarcely study regions that do not encode proteins such as microRNAs (miRNAs). Abnormalities in miRNAs, as altered expression patterns and mutations, have been described in CLL, suggesting their implication in the development of the disease. Polymorphisms in these miRNAs may deregulate miRNAs expression levels and affect to the miRNA function. However, despite accumulating evidence that inherited genetic variation in miRNA genes can contribute to the predisposition for CLL, the role of these in the risk of CLL has not been extensively studied. Therefore, the aim of this study was to find new genetic markers of risk to CLL. To that end, we made a systematic search for SNPs in miRNAs and miRNAs deregulated in CLL and genotyped 213 polymorphisms in 401 samples of Spanish individuals. The literature search resulted in more than 100 miRNAs deregulated in CLL and 43 polymorphisms studied in the disease. Out of 213 genotyped SNPs, 13 showed to be significantly associated with CLL risk. rs2682818 in pre-mature miR618 was the most significant result, with 0.49 fold decreased risk to CLL. Interestingly, a previous study associated this SNP with an increased risk of developing follicular lymphoma. Secondly, rs10173558 SNP in mir- 1302-4 showed the highest risk association, with a 5.24 fold increased risk, but there were no previous works studying it. Finally, rs61992671 in miR412, previously associated with CLL risk, showed also association in our sample. In conclusion, we find 13 alleles which could contribute to the risk of CLL. However, new large-scale studies including functional analyses will be needed to validate our findings.
Resumo:
Structural design is a decision-making process in which a wide spectrum of requirements, expectations, and concerns needs to be properly addressed. Engineering design criteria are considered together with societal and client preferences, and most of these design objectives are affected by the uncertainties surrounding a design. Therefore, realistic design frameworks must be able to handle multiple performance objectives and incorporate uncertainties from numerous sources into the process.
In this study, a multi-criteria based design framework for structural design under seismic risk is explored. The emphasis is on reliability-based performance objectives and their interaction with economic objectives. The framework has analysis, evaluation, and revision stages. In the probabilistic response analysis, seismic loading uncertainties as well as modeling uncertainties are incorporated. For evaluation, two approaches are suggested: one based on preference aggregation and the other based on socio-economics. Both implementations of the general framework are illustrated with simple but informative design examples to explore the basic features of the framework.
The first approach uses concepts similar to those found in multi-criteria decision theory, and directly combines reliability-based objectives with others. This approach is implemented in a single-stage design procedure. In the socio-economics based approach, a two-stage design procedure is recommended in which societal preferences are treated through reliability-based engineering performance measures, but emphasis is also given to economic objectives because these are especially important to the structural designer's client. A rational net asset value formulation including losses from uncertain future earthquakes is used to assess the economic performance of a design. A recently developed assembly-based vulnerability analysis is incorporated into the loss estimation.
The presented performance-based design framework allows investigation of various design issues and their impact on a structural design. It is a flexible one that readily allows incorporation of new methods and concepts in seismic hazard specification, structural analysis, and loss estimation.
Resumo:
The aim of the study was to evaluate the resistance of white spot syndrome virus (WSSV) in shrimps (Penaeus monodon) to the process of cooking. The cooking was carried out at 1000C six different durations 5, 10, 15, 20, 25 and 30 min. The presence of WSSV was tested by single step and nested polymerase chain reaction (PCR). In the single step PCR, the primers 1s5 & 1a16 and IK1 & IK2 were used. While in the nested PCR, primers IK1 &IK2 – IK3 & IK4 were used for the detection of WSSV. WSSV was detected in the single step PCR with the primers 1s5 and 1a16 and the nested PCR with the primers IK1 and IK2 – IK3 & IK4 from the cooked shrimp samples. The cooked shrimps, which gave positive results for WSSV by PCR, were further confirmed for the viability of WSSV by conducting the bio-inoculation studies. Mortality (100%) was observed within 123 h of intra-muscular post injection (P.I) into the live healthy WSSV-free shrimps (P. monodon). These results show that the WSSV survive the cooking process and even infected cooked shrimp products may pose a transmission risk for WSSV to the native shrimp farming systems.
Resumo:
Cybercrime in general derives from a series of events and factors that converge to foster this phenomenon. After an introduction, the reader will find four chapters. The first one provides a contextualization with background information. The changes in socioeconomic life and the accessibility and reach of the new technologies are assessed. The focus is set on the use of the internet and its far-reaching implications including the responses of national and international institutions. Nowadays, the internet is the window to current affairs whereby the social world is projected, and this idea becomes clear throughout the text. The second chapter deals with factors of patterns of cyberbullying. The third one is concentrated on the impact of cyberbullying and the concept of harm. The final one tackles the possibilities of recovery and resilience. All this allows us to draw some general conclusions. The work ends with a list of references and several annexes that help to understand in depth some of the points discussed throughout the text.
Resumo:
The common 2652 6N del variant in the CASP8 promoter (rs3834129) has been described as a putative low-penetrance risk factor for different cancer types. In particular, some studies suggested that the deleted allele (del) was inversely associated with CRC risk while other analyses failed to confirm this. Hence, to better understand the role of this variant in the risk of developing CRC, we performed a multi-centric case-control study. In the study, the variant 2652 6N del was genotyped in a total of 6,733 CRC cases and 7,576 controls recruited by six different centers located in Spain, Italy, USA, England, Czech Republic and the Netherlands collaborating to the international consortium COGENT (COlorectal cancer GENeTics). Our analysis indicated that rs3834129 was not associated with CRC risk in the full data set. However, the del allele was under-represented in one set of cases with a family history of CRC (per allele model OR = 0.79, 95% CI = 0.69-0.90) suggesting this allele might be a protective factor versus familial CRC. Since this multi-centric case-control study was performed on a very large sample size, it provided robust clarification of the effect of rs3834129 on the risk of developing CRC in Caucasians.