977 resultados para Croton cajucara. Inibidor. Corrosão. Biocorrosão. DCTN.Pseudomonas.
Resumo:
The seeds are excellent sources of proteinase inhibitors and have been highlighted owing to various applications. Among these applications are those in effect on food intake and weight gain that stand out because of the increasing number of obese individuals. This study evaluated the effects of trypsin inhibitor present in the seed of tamarind (Tamarindus indica L.) reduction in weight gain, biochemical and morphological alterations in Wistar rats. For this, we partially purified a trypsin inhibitor tamarind seed. This inhibitor, ITT2 at a concentration of 25 mg / kg body weight, over a period of 14 days was able to reduce food intake in rats (n = 6) by approximately 47%, causing a reduction in weight gain approximately 70% when compared with the control group. With the evaluation of the in vivo digestibility was demonstrated that the animals lost weight due to satiety, presented by the reduction of food intake, since there were significant differences between true digestibility for the control group (90.7%) and the group treated with inhibitor (89.88%). Additionally, we checked the deeds of ITT2 on biochemical parameters (glucose, triglycerides, total cholesterol, high-density lipoprotein, low-density lipoprotein, glutamic-pyruvic transaminase, glutamic oxaloacetic transaminase, gamma glutamyl transferase albumin, globulin, total protein and C-reactive protein) and these, when assessed in the study groups showed no statistically significant variations. We also evaluate the histology of some organs, liver, stomach, intestine, and pancreas, and showed no changes. And to evaluate the effect of trypsin inhibitor on food intake due to the satiety is regulated by cholecystokinin (CCK) were measured plasma levels, and it was observed that the levels of CCK in animals receiving ITT2 were significantly higher ( 20 + 1.22) than in animals receiving only solution with casein (10.14 + 2.9) or water (5.92 + 1.15). Thus, the results indicate that the effect caused ITT2 satiety, reducing food intake, which in turn caused a reduction in weight gain in animals without causing morphological and biochemical changes, this effect caused by the elevation of plasma levels CCK
Resumo:
Tese (Doutorado em Tecnologia Nuclear)
Resumo:
Wild mushrooms are mainly collected during the rainy season and valued as a nutritious food and sources of natural medicines and nutraceuticals. The aim of this study was to determine the chemical composition and bioactive properties (antioxidant, antimicrobial and cytotoxicity) of Polyporus squamosus from two different origins, Portugal and Serbia. The sample from Portugal showed higher contents of as protein (17.14 g/100 g), fat (2.69 g/100 g), ash (3.15 g/100 g) and carbohydrates (77.02 g/100 g); the same sample gave the highest antioxidant activity: highest reducing power, DPPH radical scavenging activity, and lipid peroxidation inhibition in both β-carotene/linoleate and TBARS assay. These results could be related to its higher content in total tocopherols (1968.65 μg/100 g) and phenolic compounds (1.29 mg/100 g). Both extracts exhibited antibacterial activity against all the tested organisms. The samples from Serbia gave higher overall antibacterial activity and showed excellent antibiofilm activity (88.30 %). Overall, P. squamosus methanolic extracts possessed antioxidant, antimicrobial, antibiofilm and anti-quorum sensing activity, and without toxicity for liver cells. This investigation highlights alternatives to be explored for the treatment of bacterial infections, in particular against Pseudomonas aeruginosa. This study provides important results for the chemical and bioactive properties, especially antimicrobial activity of the mushroom P. squamosus. Moreover, to the authors’ knowledge this is the first report on sugars, organic acids, and individual phenolic compounds in P. squamosus.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Fitopatologia, Programa de Pós-Graduação em Fitopatologia, 2015.
Resumo:
Two main types of noncoding small RNA molecules have been found in plants: microRNAs (miRNAs) and small interfering RNAs (siRNAs). They differ in their biogenesis and mode of action, but share similar sizes (20-24 nt). Their precursors are processed by Dicer-Like RNase III (dcl) proteins present in Arabidopsis thaliana, and in their mature form can act as negative regulators of gene expression, being involved in a vast array of plant processes, including plant development, genomic integrity or response to stress. Small-RNA mediated regulation can occurs at transcriptional level (TGS) or at post-transcriptional level (PTGS). In recent years, the role of gene silencing in the regulation of expression of genes related to plant defence responses against bacterial pathogens is becoming clearer. Comparisons carried out in our lab between the expression profiles of different mutants affected in gene silencing, and plants challenged with Pseudomonas syringae pathovar tomato DC3000, led us to identify a set of uncharacterized R genes, belonging to the TIR-NBS-LRR gene family, differentially expressed in these conditions. Through the use of bioinformatics tools, we found a miRNA* of 22 nt putatively responsible for down-regulating expression of these R genes through the generation of siRNAs. We have also found that the corresponding pri-miRNA is down-regulated after PAMP-perception in a SA-dependent manner. We also demonstrate that plants with altered levels of miRNA* (knockdown lines or overexpression lines) exhibit altered PTI-associated phenotypes, suggesting a role for this miRNA* in this defence response against bacteria. In addition we identify one of the target genes as a negative regulator of defence response against Pseudomonas syringae.
Resumo:
An investigation was carried out into the genetic mechanisms responsible for multidrug resistance in nine carbapenem- resistant Pseudomonas aeruginosa isolates from different hospitals in Recife, Brazil. Susceptibility to antimicrobial agents was determined by broth microdilution. Polymerase chain reaction (PCR) was employed to detect the presence of genes encoding β-lactamases, aminoglycoside-modifying enzymes (AMEs), 16S rRNA methylases, integron-related genes and OprD. Expression of genes coding for efflux pumps and AmpC cephalosporinase were assessed by quantitative PCR. The outer membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The blaSPM-1, blaKPC-2 and blaGES-1 genes were detected in P. aeruginosa isolates in addition to different AME genes. The loss of OprD in nine isolates was mainly due to frameshift mutations, premature stop codons and point mutations. An association of loss of OprD with the overexpression of MexAB-OprM and MexXYOprM was observed in most isolates. Hyper-production of AmpC was also observed in three isolates. Clonal relationship of the isolates was determined by repetitive element palindromic-PCR and multilocus sequence typing. Our results show that the loss of OprD along with overexpression of efflux pumps and β-lactamase production were responsible for the multidrug resistance in the isolates analysed.
Resumo:
In the search for products that act as corrosion inhibitors and do not cause environmental, impact the use of plant extracts as corrosion inhibitors is becoming a promising alternative. In this work the efficiency of polar extracts (ethanol extracts) obtained from the plants Anacardium occidentale Linn (AO) and Phyllantus amarus Schum. & Thonn (PA) as corrosion inhibitors were evaluated in different concentrations. For that AO and PA extracts were solubilized in the microemulsion systems (SME) containing saponified coconut oil as surfactant (SME -OCS and SME-OCS-1) in saline (NaCl 3,5 %) solution, which was also used as electrolyte. Both SME-OCS and SME-OCS-1 were characterized by surface tension and viscosity methods showing a Newtonian fluid behavior. The SME-OCS and SME-OCS-1 systems satisfactorily solubilized the polar extracts AO and PA with measurements carried out by ultraviolet spectroscopy. The measurements of corrosion inhibition efficiencies were performed by the electrochemical linear polarization resistance (LPR) technique as well as weight loss, on the surface of AISI 1020 carbon steel. The maximum corrosion inhibition efficiencies were determined by extrapolation of Tafel plots, showing the following values: 95,6 % for the system SME-OCS-AO, 98,9 % for the system SME-OCS-AO-1 and 93,4 % for the system SME-OCS-PA
Resumo:
Controlling iron distribution is important for all organisms, and is key in bacterial pathogenesis. It has long been understood that cystic fibrosis (CF) patient sputum contains elevated iron concentrations. However, anaerobic bacteria have been isolated from CF sputum and hypoxic zones in sputum have been measured. Because ferrous iron [Fe(II)] is stable in reducing, acidic conditions, it could exist in the CF lung. I show that a two-component system, BqsRS, specifically responds to Fe(II) in the CF pathogen, Pseudomonas aeruginosa. Concurrently, a clinical study found that Fe(II) is present in CF sputum at all stages of lung function decline. Fe(II), not Fe(III) correlates with patients in the most severe disease state. Furthermore, transcripts of the newly identified BqsRS were detected in sputum. Two component systems are the main method bacteria interact with their extracellular environment. A typical two-component system contains a sensor histidine kinase, which upon activation phosphorylates a response regulator that then acts as a transcription factor to elicit a cellular response to stimuli. To explore the mechanism of BqsRS, I describe the Fe(II)-sensing RExxE motif in the sensor BqsS and determine the consensus DNA sequence BqsR binds. With the BqsR binding sequence, I identify novel regulon members through bioinformatic and molecular biology techniques. From the predicted function of new BqsR regulon members, I find that Fe(II) elicits a response that globally protects the cells against cationic stressors, including clinically relevant antibiotics. Subsequently, I use BqsR as a case study to determine if promoter outputs can accurately be predicted based only on a deep understanding of a transcriptional activator’s operator or if a broader regulatory context is required for accurate predictions at all genomic loci. This work highlights the importance of Fe(II) as a (micro)environmental factor, even in conditions typically thought of as aerobic. Since the presence of Fe(II) can alter P. aeruginosa’s antibiotic susceptibility, combining the current strategy of targeting Fe(III) with a new approach targeting Fe(II) may help eradicate infections in the CF lung in the future.
Resumo:
In natural environments, bacterial physiology is frequently characterized by slow metabolic rates and complex cellular heterogeneities. The opportunistic pathogen Pseudomonas aeruginosa provides one such example; P. aeruginosa forms untreatable chronic biofilm infections of the cystic fibrosis lung, where oxygen limitation can lead to states of metabolic dormancy. To better understand the biology of these states, in vitro experiments must be adapted to better recapitulate natural settings. However, low rates of protein turnover and cellular or phenotypic complexity make these systems difficult to study using established methods. Here we adapt the bioorthogonal noncanonical amino acid tagging (BONCAT) method for time- and cell-selective proteomic analysis to the study of P. aeruginosa. Analysis of proteins synthesized in an anoxic dormancy state led to the discovery of a new type of transcriptional regulator which we designated SutA. We performed detailed analyses of SutA’s role in transcription under slow growth states and we elucidated the structural basis for its regulatory behavior. Additionally, we used cell-selective targeting of BONCAT labeling to measure the dynamic proteomic response of an antibiotic-tolerant biofilm subpopulation. Overall this work shows the utility of selective proteomics as applied to bacterial physiology and describes the broad biological insight obtained from that application.
Resumo:
A integração agricultura pecuária consiste em uma alternativa promissora de produção, pelo aumento da eficiência de utilização de recursos naturais e a preservação do meio ambiente, além de cooperar com a segurança alimentar. Porém, para se obter sucesso em seu uso, a pastagem não deve estar em estádio avançado de degradação. Em áreas já degradadas, pode-se utilizar as Pseudomonas que são rizobactérias promotoras de crescimento. Neste trabalho, foram avaliados os efeitos decorrentes da exposição a P. putida em mamíferos e um invertebrado aquático como sistema teste para avaliação de risco da introdução desses agentes microbiológicos nessas áreas. Não foram encontrados sinais de patogenicidade e infectividade desses agentes microbianos utilizados como biorremediadores. Apesar disso, seria interessante a realização de testes adicionais a fim de garantir a inocuidade dos agentes bem como a sua segurança. Os protocolos empregados fornecem subsídios técnicos para gerenciar os possíveis riscos envolvidos na liberação e/ou uso do produto. Os resultados obtidos, além de sua aplicação na identificação de efeitos prejudiciais à saúde ambiental, poderão subsidiar e orientar avaliações P. putida por agências reguladoras, quanto ao seu uso comercial para fins de biorremediação.
Resumo:
Artigo licenciado sob uma Licença Creative Commons: https://creativecommons.org/licenses/by-nc/4.0/deed.pt
Resumo:
Dissertação de Mestrado, Biologia Molecular e Microbiana, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Pós-Graduação em Biologia Molecular, 2010.
Resumo:
There has been some concern about the environmental impact of microbial agents. Pseudomonas may be used as bioremediator and as biopesticide. In this study, we report the use of soil enzyme assays as biological indicator of possible negative effects in soil functioning after the P. putida AF7 inoculation. For that, P. putida AF7 was originally isolated from the rizosphere of rice and was inoculated on three soil types: Rhodic Hapludox (RH), Typic Hapludox (TH); and Arenic Hapludult (AH). The acid phosphatase, b-glucosidase and protease enzymes activities were measured for three period of evaluation (7, 14 and 21 days). In general, the enzymatic activities pre- sented variation among the tested soils. The highest activities of b-glucosidase and acid phosphatase were observed in the RH and AH soils, while the protease activity was higher in the TH soil. Also, the soil charac- teristics were measured for each plot. The activity of enzymes from the carbon cycle was positively correlated with the N and the P and the enzyme from the nitrogen cycle was negatively correlated with N and C.org. The presented data indicate that soil biochemical properties can be an useful tool for use as an indicator of soil perturba- tions by microbial inoculation in a risk assessment.