997 resultados para Coupling parameters
Resumo:
We propose a silicon ring-based optical modulation method to perform chirp-free optical modulations. In this scheme, we locate the light to be modulated at the resonance of the ring and tune the coupling coefficient between the ring and the straight waveguide by using a push-pull coupling structure. The chirp-free phase modulation can be achieved by varying the coupling coefficient in a large range, which can modify the coupling condition of the ring such that the input light experiences an abrupt phase shift of pi at the output. If the coupling coefficient is adjusted in a small range such that the coupling condition of the ring is kept unchanged, only the intensity of the light will be modulated. This leads to chirp-free intensity modulation. Our simulations performed at 10 Gbits/s confirm the feasibility of the proposal. (C) 2009 Optical Society of America
Resumo:
Directional coupler can be constructed by putting multiple photonic crystal waveguides together. The propagation of the optical field entering this system symmetrically was analysed numerically according to self-imaging principle. On the basis of this structure, ultracompact multiway beam splitter was designed and the ones with three and four output channels were discussed in details as examples. By simply tuning the effective refractive index of two dielectric rods in the coupler symmetrically to induce the redistribution of the power of the optical field, uniform or free splitting can be achieved. Compared with the reported results, this way is simpler, more feasible and more efficient and has extensive practical value in future photonic integrated circuits.
Resumo:
We have studied the optical matching layers (OMLs) and external quantum efficiency in the evanescent coupling photodiodes (ECPDs) integrating a diluted waveguide as a fibre-to-waveguide coupler, by using the semi-vectorial beam propagation method (BPM). The physical basis of OML has been identified, thereby a general designing rule of OML is developed in such a kind of photodiode. In addition, the external quantum efficiency and the polarization sensitivity versus the absorption and coupling length are analysed. With an optical matching layer, the absorption medium with a length of 30 mu m could absorb 90% of the incident light at 1.55 mu m wavelength, thus the total absorption increases more than 7 times over that of the photodiode without any optical matching layer.
Resumo:
Mode coupling between the whispering-gallery modes (WGMs) is numerically investigated for a two-dimensional microdisk resonator with an output waveguide. The equilateral-polygonal shaped mode patterns can be constructed by mode coupling in the microdisk, and the coupled modes can still keep high quality factors (Q factors). For a microdisk with a diameter of 4.5 mu m and a refractive index of 3.2 connected to a 0.6-mu m-wide output waveguide, the coupled mode at the wavelength of 1490 nm has a Q factor in the order of 10(4), which is ten times larger than those of the uncoupled WGMs, and the output efficiency defined as the ratio of the energy flux confined in the output waveguide to the total radiation energy flux is about 0.65. The mode coupling can be used to realize high efficiency directional-emission microdisk lasers. (C) 2009 Optical Society of America
Resumo:
Surface plasmons(SPs) generated in nano metallic gratings on medium layer can greatly enhance the transmission field through the metallic gratings. The enhancement effect is achieved from lambda = 500 nm to near-infrared domain. The enhancement rate is about 110 % at the wavelength of about 6 10 nm and about 180 % at lambda = 700 nm and 740 nm where most kinds of thin film solar cells have a high spectral response. These structures should provide a promising way to increase the coupling efficiency of thin film solar cells and optical detectors of different wavelength response.
Resumo:
For a second-order DFB-LD, the presence of a metal contact layer can reduce I-st-order radiation. Part of the reflected power is redistributed into guided modes and results in a variation of the effective coupling coefficient kappa(eff). In this paper, we study the effect of the Au top contact's reflection on the kappa(eff) of 2(nd)-order DFB lasers. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Decoherence properties of two Josephson charge qubits coupled via the sigma(x)sigma(x) type are investigated. Considering the special structure of this new design, the dissipative effects arising from the circuit impedance providing the fluxes for the qubits' superconducting quantum interference device loops coupled to the sigma(x) qubit variables are considered. The results show that the overall decoherence effects are significantly strong in this qubit design. It is found that the dissipative effects are stronger in the case of coupling to two uncorrelated baths than are found in the case of one common bath.
Resumo:
The effects of deposition gas pressure and H-2 dilution ratio (H-2/SiH4+CH4+H-2), generally considered two of dominant parameters determining crystallinity in beta-SiC thin films prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD method, on the films properties have been systematically studied. As deposition gas pressure increase from 40 to 1000 Pa, the crystallinity of the films is improved. From the study of H-2 dilution ratio, it is considered that H-2 plays a role as etching gas and modulating the phases in beta-SiC thin films. On the basis of the study on the parameters, nanocrystalline beta-SiC films were successfully synthesized on Si substrate at a low temperature of 300degreesC. The Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) spectra show formation of beta-SiC. Moreover, according to Sherrer equation, the average grain size of the films estimated is in nanometer-size. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We have calculated the in-plane conductance of a barrier with the Dresselhaus spin-orbit interaction, which is sandwiched between two spin-polarized materials aligned arbitrarily. Besides a transmitted in-plane current which arises on the drain side as pointed out in Phys. Rev. Lett. 93, 056601 (2004), a reflected in-plane current always appears simultaneously on the source side near the interface of the barrier. The spin polarization of the source affects the transmitted current more than the reflected one, and conversely the spin polarization of the drain affects the reflected current more. The relationship between transmitted current and the reflected one has been studied.
Resumo:
A novel design of out-of-plane grating couplers is proposed for coupling between silicon-on-insulator nanophotonic waveguides and single-mode fibres. The coupler with the first-order diffraction coupling to the optical fibre is actually a second-order reflected grating with two times of period of the first-order grating. To enhance outcoupled power, a back hole is designed to form in the silicon substrate and a kind of metals is placed on the top acting as a reflection layer. The coupler is optimized using coupled-mode- based simulations, showing that, the coupling efficiency to and from tapered optical fibre can be as high as 85% with 1 dB bandwidth about 23nm.
Resumo:
The effects of lattice vibration on the system in which the electron is weakly coupled with bulk longitudinal optical phonons and strongly coupled with interface optical phonons in an infinite quantum well were studied by using Tokuda' linear-combination operator and a modified LLP variational method. The expressions for the effective mass of the polaron in a quantum well QW as functions of the well's width and temperature were derived. In particular, the law of the change of the vibration frequency of the polaron changing with well' s width and temperature are obtained. Numerical results of the effective mass and the vibration frequency of the polaron for KI/AgCl/Kl QW show that the vibration frequency and the effective mass of the polaron decrease with increasing well's width and temperature, but the contribution of the interaction between the electron and the different branches of phonons to the effective mass and the vibration frequency and the change of their variation with the well's width and temperature are greatly different.
Resumo:
We have investigated the pump effect induced by the level oscillation in a quantum dot with asymmetric constrictions. The curve of pumped current versus the frequency of level oscillation undulates at zero temperature. The oscillation of the pumped current can be smeared by increasing the temperature and the coupling strength between the quantum dot and the leads. Either the temperature increase or the coupling strength enhancement can lead to a positive or negative effect on the pumped current, depending on the parameters of the quantum dot system. A larger level-oscillation magnitude results in a larger pumped current, especially in the low-frequency case. An analytical expression of the pumped current is obtained in the regime far from adiabatic. A convenient physical picture based on our analytic result is proposed, with which we can explain all the features of the pumped current curves.
Resumo:
An extended subtraction method of scattering parameters for characterizing laser diode is proposed in this paper. The intrinsic response is extracted from the measured transmission coefficients of laser diode, and the parasitics of packaging net-work laser chip are determined from the measured reflection coefficient of laser diode simultaneously. It is shown that the theories agree well with the experimental results.
Resumo:
We have demonstrated stable self-starting passive mode-locking in a diode-end-pumped Nd: YVO4 laser using a semiconductor saturable absorber mirror (SESAM). An ln(0.25)Ga(0.75)As single quantum-well SESAM, which was grown by the metalorganic chemical-vapor deposition technique at low temperature, acts as a passive mode-locking device and an output coupler at the same time. Continuous-wave mode-locked transform-limited pulses were obtained at 1064 nm with a pulse duration of 2.1 ps and an average output power of 1.28 W at a repetition rate of 96.5 MHz. (c) 2005 American Institute of Physics.
Resumo:
We describe a new method for extracting the intrinsic response of a laser diode from S-parameters measured using a calibrated vector network analyzer. The experimental results obtained using the new method are compared with those obtained using the optical modulation method and the frequency response subtraction method. Good agreement has been obtained, confirming the new method validity and accuracy. The new method has the advantages of obtaining the intrinsic characteristics of a laser diode with conventional measurements using a network analyzer.