1000 resultados para Cornel potential


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the use of liquid crystal (LC) adaptive optics elements to provide full 3 dimensional particle control in an optical tweezer. These devices are suitable for single controllable traps, and so are less versatile than many of the competing technologies which can be used to control multiple particles. However, they have the advantages of simplicity and light efficiency. Furthermore, compared to binary holographic optical traps they have increased positional accuracy. The transmissive LC devices could be retro-fitted to an existing microscope system. An adaptive modal LC lens is used to vary the z-focal position over a range of up to 100 μm and an adaptive LC beam-steering device is used to deflect the beam (and trapped particle) in the x-y plane within an available radius of 10 μm. Furthermore, by modifying the polarisation of the incident light, these LC components also offer the opportunity for the creation of dual optical traps of controllable depth and separation. © 2006 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conducted a comparative statistical analysis of tetra- through hexanucleotide frequencies in two sets of introns of yeast genes. The first set consisted of introns of genes that have transcription rates higher than 30 mRNAs/h while the second set contained introns of genes whose transcription rates were lower than or equal to 10 mRNAs/h. Some oligonucleotides whose occurrence frequencies in the first set of introns are significantly higher than those in the second set of introns were detected. The frequencies of occurrence of most of these detected oligonucleotides are also significantly higher than those in the exons flanking the introns of the first set. Interestingly some of these detected oligonucleotides are the same as well known "signature" sequences of transcriptional regulatory elements. This could imply the existence of potential positive regulatory motifs of transcription in yeast introns. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is potential to extract energy from wastewater in a number of ways, including: kinetic energy using micro-hydro systems, chemical energy through the incineration of sludge, biomass energy from the biogas produced after anaerobic sludge digestion, and thermal energy as heat. This paper considers the last option and asks how much heat could be recovered under UK climatic conditions and can this heat be used effectively by wastewater treatment plants to reduce their carbon footprint? Four wastewater treatment sites in southern England are investigated and the available heat that can be recovered at those sites is quantified. Issues relating to the environmental, economic and practical constraints on how energy can be realistically recovered and utilised are discussed .The results show there is a definite possibility for thermal energy recovery with potential savings at some sites of up to 35,000 tonnes of total long-cycle carbon equivalent (fossil fuel) emissions per year being achievable. The paper also shows that the financial feasibility of three options for using the heat (either for district heating, sludge drying or thermophilic heating in sludge digestion processes) is highly dependant upon the current shadow price of carbon. Without the inclusion of the cost of carbon, the financial feasibility is significantly limited. An environmental constraint for the allowable discharge temperature of effluent after heat-extraction was found to be the major limitation to the amount of energy available for recovery. The paper establishes the true potential of thermal energy recovery from wastewater in English conditions and the economic feasibility of reducing the carbon footprint of wastewater treatment operations using this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The innately highly efficient light-powered separation of charge that underpins natural photosynthesis can be exploited for applications in photoelectrochemistry by coupling nanoscale protein photoreaction centers to man-made electrodes. Planar photoelectrochemical cells employing purple bacterial reaction centers have been constructed that produce a direct current under continuous illumination and an alternating current in response to discontinuous illumination. The present work explored the basis of the open-circuit voltage (V(OC)) produced by such cells with reaction center/antenna (RC-LH1) proteins as the photovoltaic component. It was established that an up to ~30-fold increase in V(OC) could be achieved by simple manipulation of the electrolyte connecting the protein to the counter electrode, with an approximately linear relationship being observed between the vacuum potential of the electrolyte and the resulting V(OC). We conclude that the V(OC) of such a cell is dependent on the potential difference between the electrolyte and the photo-oxidized bacteriochlorophylls in the reaction center. The steady-state short-circuit current (J(SC)) obtained under continuous illumination also varied with different electrolytes by a factor of ~6-fold. The findings demonstrate a simple way to boost the voltage output of such protein-based cells into the hundreds of millivolts range typical of dye-sensitized and polymer-blend solar cells, while maintaining or improving the J(SC). Possible strategies for further increasing the V(OC) of such protein-based photoelectrochemical cells through protein engineering are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the modelling of strategic interactions between the human driver and the vehicle active front steering (AFS) controller in a path-following task where the two controllers hold different target paths. The work is aimed at extending the use of mathematical models in representing driver steering behaviour in complicated driving situations. Two game theoretic approaches, namely linear quadratic game and non-cooperative model predictive control (non-cooperative MPC), are used for developing the driver-AFS interactive steering control model. For each approach, the open-loop Nash steering control solution is derived; the influences of the path-following weights, preview and control horizons, driver time delay and arm neuromuscular system (NMS) dynamics are investigated, and the CPU time consumed is recorded. It is found that the two approaches give identical time histories as well as control gains, while the non-cooperative MPC method uses much less CPU time. Specifically, it is observed that the introduction of weight on the integral of vehicle lateral displacement error helps to eliminate the steady-state path-following error; the increase in preview horizon and NMS natural frequency and the decline in time delay and NMS damping ratio improve the path-following accuracy. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

15 years ago the vertical SuperJunction (SJ) concept conceived for SJ power MOSFETs was the last, major breakthrough in the field of silicon power devices. Today, the SuperJunction MOSFET technologies have reached a mature stage characterized by gradual performance improvements. SuperJunction Insulated Gate Bipolar Transistors (SJ IGBTs) could interrupt this stagnation holding promise to revitalize voltage classes from 600 up to 1200 V. Such SJ IGBTs surpass by a very significant margin their SJ MOSFET counterparts both in terms of power handling capability, on-state and turn-off losses, all at the same time. On the higher end of the voltage class, SJ IGBTs would top the performance of 1.2 kV IGBTs by a similar margin. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulation of materials at the atomistic level is an important tool in studying microscopic structure and processes. The atomic interactions necessary for the simulation are correctly described by Quantum Mechanics. However, the computational resources required to solve the quantum mechanical equations limits the use of Quantum Mechanics at most to a few hundreds of atoms and only to a small fraction of the available configurational space. This thesis presents the results of my research on the development of a new interatomic potential generation scheme, which we refer to as Gaussian Approximation Potentials. In our framework, the quantum mechanical potential energy surface is interpolated between a set of predetermined values at different points in atomic configurational space by a non-linear, non-parametric regression method, the Gaussian Process. To perform the fitting, we represent the atomic environments by the bispectrum, which is invariant to permutations of the atoms in the neighbourhood and to global rotations. The result is a general scheme, that allows one to generate interatomic potentials based on arbitrary quantum mechanical data. We built a series of Gaussian Approximation Potentials using data obtained from Density Functional Theory and tested the capabilities of the method. We showed that our models reproduce the quantum mechanical potential energy surface remarkably well for the group IV semiconductors, iron and gallium nitride. Our potentials, while maintaining quantum mechanical accuracy, are several orders of magnitude faster than Quantum Mechanical methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the use of 241Am as proliferation resistant burnable poison for light water reactors. Homogeneous addition of small (as little as 0.12%) amounts of 241Am to the conventional light water reactor fuel results in significant increase in 238Pu/Pu ratio in the discharged fuel improving its proliferation resistance. Moreover, 241Am, admixed to the fuel, acts as burnable absorber allowing for substantial reduction in conventional reactivity control means without a notable fuel cycle length penalty. This is possible due to favorable characteristics of 241Am transmutation chain. The fuel cycle length penalty of introducing 241Am into the core is evaluated and discussed, as well as the impact of He production in the fuel pins and degradation of reactivity feedback coefficients. Proliferation resistance and reactivity control features related to the use of 241Am are compared to those of using 237Np, which has also been suggested as an additive to the conventional fuel in order to improve its proliferation resistance. It was found that 241Am admixture is more favorable than 237Np admixture because of the smaller fuel cycle length penalty and higher burnable poison savings. Addition of either 237Np or 241Am would provide substantial but not ultimate protection from misuse of Pu originating in the spent fuel from the commercial power reactors. Therefore, the benefits from application of the concept would have to be carefully evaluated against the additional costs and proliferation risks associated with manufacturing of 237Np or 241Am doped fuel. Although this work concerns specifically with PWRs, the conclusions could also be applied to BWRs and, to some extent, to other thermal spectrum reactor types. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the use of 141Am as proliferation resistant burnable poison for light water reactors. Homogeneous addition of small (less than 1 %) amounts of 241Am to the conventional LWR fuel results in significant increase in 238Pu/Pu ratio in the discharged fuel improving its proliferation resistance. Moreover, 241Am, admixed to the fuel, acts as burnable absorber allowing for substantial reduction in conventional reactivity control means without notable fuel cycle length penalty. This is possible due to favourable characteristics of 241Am transmutation chain. The fuel cycle length penalty of introducing 241Am into the core is evaluated and discussed, as well as the impact of He production in the fuel pins and degradation of reactivity feedback coefficients. Proliferation resistance and reactivity control features related to the use of 241Am are compared to those of using 237Np, which has also been suggested as an additive to the conventional fuel in order to improve its proliferation resistance. It was found that 241Am admixture is more favourable than 237Np admixture because of the smaller fuel cycle length penalty and higher burnable poison savings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present in two parts an assessment of global manufacturing. In the first part, we review economic development, pollution, and carbon emissions from a country perspective, tracking the rise of China and other developing countries. The results show not only a rise in the economic fortunes of the newly industrializing nations, but also a significant rise in global pollution, particularly air pollution and CO2 emissions largely from coal use, which alter and even reverse previous global trends. In the second part, we change perspective and quantitatively evaluate two important technical strategies to reduce pollution and carbon emissions: energy efficiency and materials recycling. We subdivide the manufacturing sector on the basis of the five major subsectors that dominate energy use and carbon emissions: (a) iron and steel, (b) cement, (c) plastics, (d) paper, and (e) aluminum. The analysis identifies technical constraints on these strategies, but by combined and aggressive action, industry should be able to balance increases in demand with these technical improvements. The result would be high but relatively flat energy use and carbon emissions. The review closes by demonstrating the consequences of extrapolating trends in production and carbon emissions and suggesting two options for further environmental improvements, materials efficiency, and demand reduction. © 2013 by Annual Reviews. All rights reserved.