997 resultados para Control of oscillations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accurate control of the relative phase of multiple distinct sources of radiation produced by high harmonic generation is of central importance in the continued development of coherent extreme UV (XUV) and attosecond sources. Here, we present a novel approach which allows extremely accurate phase control between multiple sources of high harmonic radiation generated within the Rayleigh range of a single-femtosecond laser pulse using a dualgas, multi-jet array. Fully ionized hydrogen acts as a purely passive medium and allows highly accurate control of the relative phase between each harmonic source. Consequently, this method allows quantum path selection and rapid signal growth via the full coherent superposition of multiple HHG sources (the so-called quasi-phase-matching). Numerical simulations elucidate the complex interplay between the distinct quantum paths observed in our proof-of-principle experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High harmonic generation (HHG) is a central driver of the rapidly growing field of ultrafast science. We present a novel quasiphase-matching (QPM) concept with a dual-gas multijet target leading, for the first time, to remarkable phase control between multiple HHG sources (> 2) within the Rayleigh range. The alternating jet structure with driving and matching zones shows perfect coherent buildup for up to six QPM periods. Although not in the focus of the proof-of-principle studies presented here, we achieved competitive conversion efficiencies already in this early stage of development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two techniques are demonstrated to produce ultrashort pulse trains capable of quasi-phase-matching high-harmonic generation. The first technique makes use of an array of birefringent crystals and is shown to generate high-contrast pulse trains with constant pulse spacing. The second technique employs a grating-pair stretcher, a multiple-order wave plate, and a linear polarizer. Trains of up to 100 pulses are demonstrated with this technique, with almost constant inter-pulse separation. It is shown that arbitrary pulse separation can be achieved by introducing the appropriate dispersion. This principle is demonstrated by using an acousto-optic programmable dispersive filter to introduce third-and fourth-order dispersions leading to a linear and quadratic variation of the separation of pulses through the train. Chirped-pulse trains of this type may be used to quasi-phase-match high-harmonic generation in situations where the coherence length varies through the medium. (C) 2010 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioresorbable polymers have been widely investigated as materials exhibiting significant potential for successful application in the fields of tissue engineering and drug delivery. Further to the ability to control degradation, surface engineering of polymers has been highlighted as a key method central to their development. Previous work has demonstrated the ability of electron beam (e-beam) technology to control the degradation profiles and bioresorption of a number of commercially relevant bioresorbable polymers (poly-l-lactic acid (PLLA), Llactide/DL-lactide co-polymer (PLDL) and poly(lactic-co-glycolic acid (PLGA)). This work investigates the further potential of ebeam technology to impart added biofunctionality through the manipulation of polymer (PLLA) surface properties. PLLA samples were subjected to e-beam treatments in air, with varying beam energies and doses. Surface characterization was then performed using contact angle analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy. Results demonstrated a significant increase in surface wettability post e-beam treatment. In correlation with this, XPS data showed the introduction of oxygen-containing functional groups to the surface of PLLA. Raman spectroscopy indicated chain scission in the near surface region of PLLA (as predicted). However, e-beam effects on surface properties were not shown to be dependent on beam energy or dose. E-beam irradiation did not seem to affect the surface roughness of PLLA as a direct consequence of the treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential application of phage therapy for the control of bacterial biofilms has received increasing attention as resistance to conventional antibiotic agents continues to increase. The present study identifies antimicrobial synergy between bacteriophage T4 and a conventional antibiotic, cefotaxime, via standard plaque assay and, importantly, in the in vitro eradication of biofilms of the T4 host strain Escherichia coli 11303. Phage-antibiotic synergy (PAS) is defined as the phenomenon whereby sub-lethal concentrations of certain antibiotics can substantially stimulate the host bacteria's production of virulent phage. Increasing sub-lethal concentrations of cefotaxime resulted in an observed increase in T4 plaque size and T4 concentration. The application of PAS to the T4 one-step growth curve also resulted in an increased burst size and reduced latent period. Combinations of T4 bacteriophage and cefotaxime significantly enhanced the eradication of bacterial biofilms when compared to treatment with cefotaxime alone. The addition of medium (10(4) PFU mL(-1) ) and high (10(7) PFU mL(-1) ) phage titres reduced the minimum biofilm eradication concentration value of cefotaxime against E. coli ATCC 11303 biofilms from 256 to 128 and 32 µg mL(-1) , respectively. Although further investigation is needed to confirm PAS, this study demonstrates, for the first time, that synergy between bacteriophage and conventional antibiotics can significantly improve biofilm control in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This brief investigates a possible application of the inverse Preisach model in combination with the feedforward and feedback control strategies to control shape memory alloy actuators. In the feedforward control design, a fuzzy-based inverse Preisach model is used to compensate for the hysteresis nonlinearity effect. An extrema input history and a fuzzy inference is utilized to replace the inverse classical Preisach model. This work allows for a reduction in the number of experimental parameters and computation time for the inversion of the classical Preisach model. A proportional-integral-derivative (PID) controller is used as a feedback controller to regulate the error between the desired output and the system output. To demonstrate the effectiveness of the proposed controller, real-time control experiment results are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shape memory alloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications in aeronautics, surgical tools, robotics, and so on. Although the number of applications is increasing, there has been limited success in precise motion control owing to the hysteresis effect of these smart actuators. The present paper proposes an optimization of the proportional-integral-derivative (PID) control method for SMA actuators by using genetic algorithm and the Preisach hysteresis model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shape Memory Alloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications such as aeronautics, surgical tools, robotics and so on. Although the conventional PID controller can be used with slow response systems, there has been limited success in precise motion control of SMA actuators, since the systems are disturbed by unknown factors beside their inherent nonlinear hysteresis and changes in the surrounding environment of the systems. This paper presents a new development of a SMA position control system by using a self-tuning fuzzy PID controller. This control algorithm is used by tuning the parameters of the PID controller thereby integrating fuzzy inference and producing a fuzzy adaptive PID controller, which can then be used to improve the control performance of nonlinear systems. The experimental results of position control of SMA actuators using conventional and self-tuning fuzzy PID controllers are both included in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the trajectory control of a 2DOF mini electro-hydraulic excavator by using fuzzy self tuning with neural network algorithm. First, the mathematical model is derived for the 2DOF mini electro-hydraulic excavator. The fuzzy PID and fuzzy self tuning with neural network are designed for circle trajectory following. Its two links are driven by an electric motor controlled pump system. The experimental results demonstrated that the proposed controllers have better control performance than the conventional controller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shapememoryalloy (SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications in aeronautics, surgical tools, robotics and so on. Nonlinearity hysteresis effects existing in SMA actuators present a problem in the motion control of these smart actuators. This paper investigates the control problem of SMA actuators in both simulation and experiment. In the simulation, the numerical Preisachmodel with geometrical interpretation is used for hysteresis modeling of SMA actuators. This model is then incorporated in a closed loop PID control strategy. The optimal values of PID parameters are determined by using geneticalgorithm to minimize the mean squared error between desired output displacement and simulated output. However, the control performance is not good compared with the simulation results when these parameters are applied to the real SMA control since the system is disturbed by unknown factors and changes in the surrounding environment of the system. A further automated readjustment of the PID parameters using fuzzylogic is proposed for compensating the limitation. To demonstrate the effectiveness of the proposed controller, real time control experiment results are presented.