965 resultados para Concrete construction
Resumo:
The internationalization of construction companies has become of significant interest as the global construction market continues to be integrated into a more competitive and turbulent business environment. However, due to the complicated and multifaceted nature of international business and performance, there is as yet no consensus on how to evaluate the performance of international construction firms (ICFs). The purpose of this paper, therefore, is to develop a practical framework for measuring the performance of ICFs. Based on the balanced scorecard (BSC), a framework with detailed measures is developed, investigated, and tested using a three-step research design. In the first step, 27 measures under six dimensions (financial, market, customer, internal business processes, stakeholders, and learning and growth) are determined by literature review, interviews with academics, and seminar discussions. Subsequently, a questionnaire survey is conducted to investigate weights of these 27 performance measures. The questionnaire survey also supports the importance of measuring intangible aspects of international construction performance from the practitioner’s viewpoint. Additionally, a case study is described to test the framework’s robustness and usefulness. This is achieved by benchmarking the performance of a Chinese ICF with nine other counterparts worldwide. It is found that the framework provides an effective basis for benchmarking ICFs to effectively monitor their performance and support the development of strategies for improved competitiveness in the international arena. This paper is the first attempt to present a balanced and practically tested framework for evaluating the performance of ICFs. It contributes to the practice of performance measurement and related internationalization in the construction industry in general.
Resumo:
There is increasing concern about the impact of employees’ alcohol and other drug (AOD) consumption on workplace safety, particularly within the construction industry. No known study has scientifically evaluated the relationship between the use of drugs and alcohol and safety impacts in construction, and there has been only limited adoption of nationally coordinated strategies, supported by employers and employees to render it socially unacceptable to arrive at a construction workplace with impaired judgment from AODs. This research aims to scientifically evaluate the use of AODs within the Australian construction industry in order to reduce the potential resulting safety and performance impacts and engender a cultural change in the workforce. Using the Alcohol Use Disorders Identification Test (AUDIT), the study will adopt both quantitative and qualitative methods to evaluate the extent of general AOD use in the industry. Results indicate that a proportion of the construction sector may be at risk of hazardous alcohol consumption. A total of 286 respondents (58%) scored above the cut-off score for risky alcohol use with 43 respondents (15%) scoring in the significantly ‘at risk’ category. Other drug use was also identified as a major issue that must be addressed. Results support the need for evidence-based, preventative educational initiatives that are tailored specifically to the construction industry.
Resumo:
Background: In sub-tropical and tropical Queensland, a legacy of poor housing design,minimal building regulations with few compliance measures, an absence of post-construction performance evaluation and various social and market factors has led to a high and growing penetration of, and reliance on, air conditioners to provide thermal comfort for occupants. The pervasive reliance on air conditioners has arguably impacted on building forms, changed cultural expectations of comfort and social practices for achieving comfort, and may have resulted in a loss of skills in designing and constructing high performance building envelopes. Aim: The aim of this paper is to report on initial outcomes of a project that sought to determine how the predicted building thermal performance of twenty-five houses in subtropical and tropical Queensland compared with objective performance measures and comfort performance as perceived by occupants. The purpose of the project was to shed light on the role of various supply chain agents in the realisation of thermal performance outcomes. Methodology: The case study methodology embraced a socio-technical approach incorporating building science and sociology. Building simulation was used to model thermal performance under controlled comfort assumptions and adaptive comfort conditions. Actual indoor climate conditions were measured by temperature and relative humidity sensors placed throughout each house, whilst occupants’ expectations of thermal comfort and their self-reported behaviours were gathered through semi-structured interviews and periodic comfort surveys. Thermal imaging and air infiltration tests, along with building design documents, were analysed to evaluate the influence of various supply chain agents on the actual performance outcomes. Results: The results clearly show that in the housing supply chain – from designer to constructor to occupant – there is limited understanding from each agent of their role in contributing to, or inhibiting, occupants’ comfort.
Resumo:
Heat islands are a significant problem in urban spaces worldwide. The phenomenon occurs when air and surface temperatures in urban areas significantly exceed those experienced in nearby rural areas. There are two main causes of heat islands. The first is the use of highly absorptive construction materials in buildings and infrastructure, which soak up heat and radiate it back into the immediate surroundings. These materials, including but not limited to concrete, steel, asphalt and stone, are usually impermeable and so do not embody moisture that could dissipate some of the absorbed heat. The second cause relates to urban form, where the canyon-like configurations of buildings and streets channel and trap heat from the sun. In both cases, an absence of greenery and other soft landscaping can compound the problem by lowering capacity for cooling through shading and evotranspiration. Incidences of heat islands increase as urban areas swell in size and cover more land area, making the phenomenon an unwelcome side effect of global trends towards increased urbanisation. Heat islands create serious problems, including increased energy demand for cooling, declining air quality and heat stress for people and animals. In very severe cases, heat islands can compound the effects of high urban temperatures, leading to increased human mortality...
Resumo:
A study on the vulnerability of biaxially loaded reinforced concrete (RC) circular columns in multi-story buildings under low- to medium-velocity impacts at shear-critical locations is presented. The study is based on a previously validated nonlinear explicit dynamic finite element (FE) modeling technique developed by the authors. The impact is simulated using force pulses generated from full-scale vehicle impact tests abundantly found in the literature with a view to quantifying the sensitivity of the design parameters of the RC columns under the typical impacts that are representative of the general vehicle population. The design parameters considered include the diameter and height of the column, the vertical steel ratio, the concrete grade, and the confinement effects. From the results of the simulations, empirical equations to quantify the critical impulses for the simplified design of the short, circular RC columns under the risk of shear-critical impacts are developed.