978 resultados para Compute Unified Device Architecture(CUDA)
Resumo:
Some amount of differential settlement occurs even in the most uniform soil deposit, but it is extremely difficult to estimate because of the natural heterogeneity of the soil. The compression response of the soil and its variability must be characterised in order to estimate the probability of the differential settlement exceeding a certain threshold value. The work presented in this paper introduces a probabilistic framework to address this issue in a rigorous manner, while preserving the format of a typical geotechnical settlement analysis. In order to avoid dealing with different approaches for each category of soil, a simplified unified compression model is used to characterise the nonlinear compression behavior of soils of varying gradation through a single constitutive law. The Bayesian updating rule is used to incorporate information from three different laboratory datasets in the computation of the statistics (estimates of the means and covariance matrix) of the compression model parameters, as well as of the uncertainty inherent in the model.
Resumo:
Over the last 50 years, the city of Venice, Italy, has observed a significant increase in the frequency of flooding. Numerous engineering solutions have been proposed, including the use of movable gates located at the three lagoon inlets. A key element in the prediction of performance is the estimation of settlements of the foundation system of the gates. The soils of Venice Lagoon are characterized by very erratic depositional patterns of clayey silts, resulting in an extremely heterogeneous stratigraphy with discontinuous layering. The soils are also characterized by varying contents of coarse and fine-grained particles. In contrast, the mineralogical composition of these deposits is quite uniform, which allows us to separate the influence of mineralogy from that of grain size distribution. A comprehensive geotechnical testing program was performed to assess the one-dimensional compression of Venice soils and examine the factors affecting the response in the transition from one material type to another. The compressibility of these natural silty clayey soils can be described by a single set of constitutive laws incorporating the relative fraction of granular to cohesive material. © 2007 ASCE.
Resumo:
Smooth and continuous ZnO films consisting of densely packed ZnO nanorods (NRs), which can be used for electronic device fabrication, were synthesized using a hydro-thermo-chemical solution deposition method. Such devices would have the novelty of high performance, benefiting from the inherited unique properties of the nanomaterials, and can be fabricated on these smooth films using a conventional, low cost planar process. Photoluminescence measurements showed that the NR films have much stronger shallow donor to valence band emissions than those from discrete ZnO NRs, and hence have the potential for the development of ZnO light emission diodes and lasers, etc. The NR films have been used to fabricate large area surface acoustic wave devices by conventional photolithography. These demonstrated two well-defined resonant peaks and their potential for large area device applications. The chemical solution deposition method is simple, reproducible, scalable and economic. These NR films are suitable for large scale production on cost-effective substrates and are promising for various fields such as sensing systems, renewable energy and optoelectronic applications.
Resumo:
GaAs, InAs, and InGaAs nanowires each exhibit significant potential to drive new applications in electronic and optoelectronic devices. Nevertheless, the development of these devices depends on our ability to fabricate these nanowires with tight control over critical properties, such as nanowire morphology, orientation, crystal structure, and chemical composition. Although GaAs and InAs are related material systems, GaAs and InAs nanowires exhibit very different growth behaviors. An understanding of these growth behaviors is imperative if high-quality ternary InGaAs nanowires are to be realized. This report examines GaAs, InAs, and InGaAs nanowires, and how their growth may be tailored to achieve desirable material properties. GaAs and InAs nanowire growth are compared, with a view toward the growth of high-quality InGaAs nanowires with device-accessible properties. © 2011 IEEE.
Resumo:
Semiconductor nanowires have recently emerged as a new class of materials with significant potential to reveal new fundamental physics and to propel new applications in quantum electronic and optoelectronic devices. Semiconductor nanowires show exceptional promise as nanostructured materials for exploring physics in reduced dimensions and in complex geometries, as well as in one-dimensional nanowire devices. They are compatible with existing semiconductor technologies and can be tailored into unique axial and radial heterostructures. In this contribution we review the recent efforts of our international collaboration which have resulted in significant advances in the growth of exceptionally high quality IIIV nanowires and nanowire heterostructures, and major developments in understanding the electronic energy landscapes of these nanowires and the dynamics of carriers in these nanowires using photoluminescence, time-resolved photoluminescence and terahertz conductivity spectroscopy. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
GaAs and InP based III-V compound semiconductor nanowires were grown epitaxially on GaAs (or Si) (111)B and InP (111)B substrates, respectively, by metalorganic chemical vapor deposition using Au nanoparticles as catalyst. In this paper, we will give an overview of nanowire research activities in our group. In particular, the effects of growth parameters on the crystal structure and optical properties of various nanowires were studied in detail. We have successfully obtained defect-free GaAs nanowires with nearly intrinsic exciton lifetime and vertical straight nanowires on Si (111)B substrates. The crystal structure of InP nanowires, i.e., WZ or ZB, can also be engineered by carefully controlling the V/III ratio and catalyst size. © 2011 World Scientific Publishing Company.
Resumo:
GaAs and InP based nanowires were grown epitaxially on GaAs or InP (111)B substrates by metalorganic chemical vapor deposition using Au nanoparticles as catalyst. In this paper, we will give an overview of nanowire research activities in our group. In particular, the effects of growth parameters for GaAs and InP nanowires on the crystal quality were studied in detail. We demonstrated the ability to obtain defect-free GaAs nanowires via either two-temperature procedure, or by controlling V/III ratio or growth rate. The crystal structure of InP nanowires, ie, WZ or ZB, can also be engineered by just controlling the V/III ratio. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.
Resumo:
InGaAs quantum dots (QDs) and nanowires have been grown on GaAs by metal-organic chemical vapour deposition on GaAs (100) and (111)B substrates, respectively. InGaAs QD lasers were fabricated and characterised. Results show ground-state lasing at about 1150 nm in devices with lengths greater than 2.5 mm. We also observed a strong influence of nanowire density on nanowire height specific to nanowires with high indium composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Selective area epitaxy for applications in quantum-dot optoelectronic device integration is also discussed in this paper. ©2006 IEEE.
Resumo:
Ultra-smooth nanocrystalline diamond (UNCD) films with high-acoustic wave velocity were introduced into ZnO-based surface acoustic wave (SAW) devices to enhance their microfluidic efficiency by reducing the acoustic energy dissipation into the silicon substrate and improving the acoustic properties of the SAW devices. Microfluidic efficiency of the ZnO-based SAW devices with and without UNCD inter layers was investigated and compared. Results showed that the pumping velocities increase with the input power and those of the ZnO/UNCD/Si devices are much larger than those of the ZnO/Si devices at the same power. The jetting efficiency of the droplet was improved by introducing the UNCD interlayer into the ZnO/Si SAW device. Improvement in the microfluidic efficiency is mainly attributed to the diamond layer, which restrains the acoustic wave to propagate in the top layer rather than dissipating into the substrate. © 2013 Springer-Verlag Berlin Heidelberg.