966 resultados para Collective responsability
Resumo:
The mutual information of independent parallel Gaussian-noise channels is maximized, under an average power constraint, by independent Gaussian inputs whose power is allocated according to the waterfilling policy. In practice, discrete signalling constellations with limited peak-to-average ratios (m-PSK, m-QAM, etc) are used in lieu of the ideal Gaussian signals. This paper gives the power allocation policy that maximizes the mutual information over parallel channels with arbitrary input distributions. Such policy admits a graphical interpretation, referred to as mercury/waterfilling, which generalizes the waterfilling solution and allows retaining some of its intuition. The relationship between mutual information of Gaussian channels and nonlinear minimum mean-square error proves key to solving the power allocation problem.
Resumo:
The analysis of the multiantenna capacity in the high-SNR regime has hitherto focused on the high-SNR slope (or maximum multiplexing gain), which quantifies the multiplicative increase as function of the number of antennas. This traditional characterization is unable to assess the impact of prominent channel features since, for a majority of channels, the slope equals the minimum of the number of transmit and receive antennas. Furthermore, a characterization based solely on the slope captures only the scaling but it has no notion of the power required for a certain capacity. This paper advocates a more refined characterization whereby, as function of SNRjdB, the high-SNR capacity is expanded as an affine function where the impact of channel features such as antenna correlation, unfaded components, etc, resides in the zero-order term or power offset. The power offset, for which we find insightful closed-form expressions, is shown to play a chief role for SNR levels of practical interest.
Resumo:
We characterize the capacity-achieving input covariance for multi-antenna channels known instantaneously at the receiver and in distribution at the transmitter. Our characterization, valid for arbitrary numbers of antennas, encompasses both the eigenvectors and the eigenvalues. The eigenvectors are found for zero-mean channels with arbitrary fading profiles and a wide range of correlation and keyhole structures. For the eigenvalues, in turn, we present necessary and sufficient conditions as well as an iterative algorithm that exhibits remarkable properties: universal applicability, robustness and rapid convergence. In addition, we identify channel structures for which an isotropic input achieves capacity.
Resumo:
Supported by IEEE 802.15.4 standardization activities, embedded networks have been gaining popularity in recent years. The focus of this paper is to quantify the behavior of key networking metrics of IEEE 802.15.4 beacon-enabled nodes under typical operating conditions, with the inclusion of packet retransmissions. We corrected and extended previous analyses by scrutinizing the assumptions on which the prevalent Markovian modeling is generally based. By means of a comparative study, we singled out which of the assumptions impact each of the performance metrics (throughput, delay, power consumption, collision probability, and packet-discard probability). In particular, we showed that - unlike what is usually assumed - the probability that a node senses the channel busy is not constant for all the stages of the backoff procedure and that these differences have a noticeable impact on backoff delay, packet-discard probability, and power consumption. Similarly, we showed that - again contrary to common assumption - the probability of obtaining transmission access to the channel depends on the number of nodes that is simultaneously sensing it. We evidenced that ignoring this dependence has a significant impact on the calculated values of throughput and collision probability. Circumventing these and other assumptions, we rigorously characterize, through a semianalytical approach, the key metrics in a beacon-enabled IEEE 802.15.4 system with retransmissions.
Resumo:
The simultaneous use of multiple transmit and receive antennas can unleash very large capacity increases in rich multipath environments. Although such capacities can be approached by layered multi-antenna architectures with per-antenna rate control, the need for short-term feedback arises as a potential impediment, in particular as the number of antennas—and thus the number of rates to be controlled—increases. What we show, however, is that the need for short-term feedback in fact vanishes as the number of antennas and/or the diversity order increases. Specifically, the rate supported by each transmit antenna becomes deterministic and a sole function of the signal-to-noise, the ratio of transmit and receive antennas, and the decoding order, all of which are either fixed or slowly varying. More generally, we illustrate -through this specific derivation— the relevance of some established random CDMA results to the single-user multi-antenna problem.
Resumo:
This paper formulates power allocation policies that maximize the region of mutual informationsachievable in multiuser downlink OFDM channels. Arbitrary partitioning ofthe available tones among users and arbitrary modulation formats, possibly different forevery user, are considered. Two distinct policies are derived, respectively for slow fadingchannels tracked instantaneously by the transmitter and for fast fading channels knownonly statistically thereby. With instantaneous channel tracking, the solution adopts theform of a multiuser mercury/waterfilling procedure that generalizes the single-user mercury/waterfilling introduced in [1, 2]. With only statistical channel information, in contrast,the mercury/waterfilling interpretation is lost. For both policies, a number of limitingregimes are explored and illustrative examples are provided.