989 resultados para Coal production
Resumo:
[EN] This PhD work started in March 2010 with the support of the University of the Basque Country (UPV/EHU) under the program named “Formación de Personal Investigador” at the Chemical and Environmental Engineering Department in the Faculty of Engineering of Bilbao. The major part of the Thesis work was carried out in the mentioned department, as a member of the Sustainable Process Engineering (SuPrEn) research group. In addition, this PhD Thesis includes the research work developed during a period of 6 months at the Institut für Mikrotechnik Mainz GmbH, IMM, in Germany. During the four years of the Thesis, conventional and microreactor systems were tested for several feedstocks renewable and non-renewable, gases and liquids through several reforming processes in order to produce hydrogen. For this purpose, new catalytic formulations which showed high activity, selectivity and stability were design. As a consequence, the PhD work performed allowed the publication of seven scientific articles in peer-reviewed journals. This PhD Thesis is divided into the following six chapters described below. The opportunity of this work is established on the basis of the transition period needed for moving from a petroleum based energy system to a renewable based new one. Consequently, the present global energy scenario was detailed in Chapter 1, and the role of hydrogen as a real alternative in the future energy system was justified based on several outlooks. Therefore, renewable and non-renewable hydrogen production routes were presented, explaining the corresponding benefits and drawbacks. Then, the raw materials used in this Thesis work were described and the most important issues regarding the processes and the characteristics of the catalytic formulations were explained. The introduction chapter finishes by introducing the concepts of decentralized production and process intensification with the use of microreactors. In addition, a small description of these innovative reaction systems and the benefits that entailed their use were also mentioned. In Chapter 2 the main objectives of this Thesis work are summarized. The development of advanced reaction systems for hydrogen rich mixtures production is the main objective. In addition, the use and comparison between two different reaction systems, (fixed bed reactor (FBR) and microreactor), the processing of renewable raw materials, the development of new, active, selective and stable catalytic formulations, and the optimization of the operating conditions were also established as additional partial objectives. Methane and natural gas (NG) steam reforming experimental results obtained when operated with microreactor and FBR systems are presented in Chapter 3. For these experiments nickel-based (Ni/Al2O3 and Ni/MgO) and noble metal-based (Pd/Al2O3 and Pt/Al2O3) catalysts were prepared by wet impregnation and their catalytic activity was measured at several temperatures, from 973 to 1073 K, different S/C ratios, from 1.0 to 2.0, and atmospheric pressure. The Weight Hourly Space Velocity (WHSV) was maintained constant in order to compare the catalytic activity in both reaction systems. The results obtained showed a better performance of the catalysts operating in microreactors. The Ni/MgO catalyst reached the highest hydrogen production yield at 1073 K and steam-to-carbon ratio (S/C) of 1.5 under Steam methane Reforming (SMR) conditions. In addition, this catalyst also showed good activity and stability under NG reforming at S/C=1.0 and 2.0. The Ni/Al2O3 catalyst also showed high activity and good stability and it was the catalyst reaching the highest methane conversion (72.9 %) and H2out/CH4in ratio (2.4) under SMR conditions at 1073 K and S/C=1.0. However, this catalyst suffered from deactivation when it was tested under NG reforming conditions. Regarding the activity measurements carried out with the noble metal-based catalysts in the microreactor systems, they suffered a very quick deactivation, probably because of the effects attributed to carbon deposition, which was detected by Scanning Electron Microscope (SEM). When the FBR was used no catalytic activity was measured with the catalysts under investigation, probably because they were operated at the same WHSV than the microreactors and these WHSVs were too high for FBR system. In Chapter 4 biogas reforming processes were studied. This chapter starts with an introduction explaining the properties of the biogas and the main production routes. Then, the experimental procedure carried out is detailed giving concrete information about the experimental set-up, defining the parameters measured, specifying the characteristics of the reactors used and describing the characterization techniques utilized. Each following section describes the results obtained from activity testing with the different catalysts prepared, which is subsequently summarized: Section 4.3: Biogas reforming processes using γ-Al2O3 based catalysts The activity results obtained by several Ni-based catalysts and a bimetallic Rh-Ni catalyst supported on magnesia or alumina modified with oxides like CeO2 and ZrO2 are presented in this section. In addition, an alumina-based commercial catalyst was tested in order to compare the activity results measured. Four different biogas reforming processes were studied using a FBR: dry reforming (DR), biogas steam reforming (BSR), biogas oxidative reforming (BOR) and tri-reforming (TR). For the BSR process different steam to carbon ratios (S/C) from 1.0 to 3.0, were tested. In the case of BOR process the oxygen-to-methane (O2/CH4) ratio was varied from 0.125 to 0.50. Finally, for TR processes different S/C ratios from 1.0 to 3.0, and O2/CH4 ratios of 0.25 and 0.50 were studied. Then, the catalysts which achieved high activity and stability were impregnated in a microreactor to explore the viability of process intensification. The operation with microreactors was carried out under the best experimental conditions measured in the FBR. In addition, the physicochemical characterization of the fresh and spent catalysts was carried out by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), N2 physisorption, H2 chemisorption, Temperature Programmed Reduction (TPR), SEM, X-ray Photoelectron Spectroscopy (XPS) and X-ray powder Diffraction (XRD). Operating with the FBR, conversions close to the ones predicted by thermodynamic calculations were obtained by most of the catalysts tested. The Rh-Ni/Ce-Al2O3 catalyst obtained the highest hydrogen production yield in DR. In BSR process, the Ni/Ce-Al2O3 catalyst achieved the best activity results operating at S/C=1.0. In the case of BOR process, the Ni/Ce-Zr-Al2O3 catalyst showed the highest reactants conversion values operating at O2/CH4=0.25. Finally, in the TR process the Rh-Ni/Ce-Al2O3 catalyst obtained the best results operating at S/C=1.0 and O2/CH4=0.25. Therefore, these three catalysts were selected to be coated onto microchannels in order to test its performance under BOR and TR processes conditions. Although the operation using microreactors was carried out under considerably higher WHSV, similar conversions and yields as the ones measured in FBR were measured. Furthermore, attending to other measurements like Turnover Frequency (TOF) and Hydrogen Productivity (PROD), the values calculated for the catalysts tested in microreactors were one order of magnitude higher. Thus, due to the low dispersion degree measured by H2-chemisorption, the Ni/Ce-Al2O3 catalyst reached the highest TOF and PROD values. Section 4.4: Biogas reforming processes using Zeolites L based catalysts In this section three type of L zeolites, with different morphology and size, were synthesized and used as catalyst support. Then, for each type of L zeolite three nickel monometallic and their homologous Rh-Ni bimetallic catalysts were prepared by the wetness impregnation method. These catalysts were tested using the FBR under DR process and different conditions of BSR (S/C ratio of 1.0 and 2.0), BOR (O2/CH4 ratio of 0.25 and 0.50) and TR processes (at S/C=1.0 and O2/CH4=0.25). The characterization of these catalysts was also carried out by using the same techniques mentioned in the previous section. Very high methane and carbon dioxide conversion values were measured for almost all the catalysts under investigation. The experimental results evidenced the better catalytic behavior of the bimetallic catalysts as compared to the monometallic ones. Comparing the catalysts behavior with regards to their morphology, for the BSR process the Disc catalysts were the most active ones at the lowest S/C ratio tested. On the contrary, the Cylindrical (30–60 nm) catalysts were more active under BOR conditions at O2/CH4=0.25 and TR processes. By the contrary, the Cylindrical (1–3 µm) catalysts showed the worst activity results for both processes. Section 4.5: Biogas reforming processes using Na+ and Cs+ doped Zeolites LTL based catalysts A method for the synthesis of Linde Type L (LTL) zeolite under microwave-assisted hydrothermal conditions and its behavior as a support for heterogeneously catalyzed hydrogen production is described in this section. Then, rhodium and nickel-based bimetallic catalysts were prepared in order to be tested by DR process and BOR process at O2/CH4=0.25. Moreover, the characterization of the catalysts under investigation was also carried out. Higher activities were achieved by the catalysts prepared from the non-doped zeolites, Rh-Ni/D and Rh-Ni/N, as compared to the ones supported on Na+ and Cs+ exchanged supports. However, the differences between them were not very significant. In addition, the Na+ and Cs+ incorporation affected mainly to the Disc catalysts. Comparing the results obtained by these catalysts with the ones studied in the section 4.4, in general worst results were achieved under DR conditions and almost the same results when operated under BOR conditions. In Chapter 5 the ethylene glycol (EG) as feed for syngas production by steam reforming (SR) and oxidative steam reforming (OSR) was studied by using microchannel reactors. The product composition was determined at a S/C of 4.0, reaction temperatures between 625°C and 725°C, atmospheric pressure and Volume Hourly Space Velocities (VHSV) between 100 and 300 NL/(gcath). This work was divided in two sections. The first one corresponds to the introduction of the main and most promising EG production routes. Then, the new experimental procedure is detailed and the information about the experimental set-up and the measured parameters is described. The characterization was carried out using the same techniques as for the previous chapter. Then, the next sections correspond to the catalytic activity and catalysts characterization results. Section 5.3: xRh-cm and xRh-np catalysts for ethylene glycol reforming Initially, catalysts with different rhodium loading, from 1.0 to 5.0 wt. %, and supported on α-Al2O3 were prepared by two different preparation methods (conventional impregnation and separate nanoparticle synthesis). Then, the catalysts were compared regarding their measured activity and selectivity, as well as the characterization results obtained before and after the activity tests carried out. The samples prepared by a conventional impregnation method showed generally higher activity compared to catalysts prepared from Rh nanoparticles. By-product formation of species such as acetaldehyde, ethane and ethylene was detected, regardless if oxygen was added to the feed or not. Among the catalysts tested, the 2.5Rh-cm catalyst was considered the best one. Section 5.4: 2.5Rh-cm catalyst support modification with CeO2 and La2O3 In this part of the Chapter 5, the catalyst showing the best performance in the previous section, the 2.5Rh-Al2O3 catalyst, was selected in order to be improved. Therefore, new Rh based catalysts were designed using α-Al2O3 and being modified this support with different contents of CeO2 or La2O3 oxides. All the catalysts containing additives showed complete conversion and selectivities close to the equilibrium in both SR and OSR processes. In addition, for these catalysts the concentrations measured for the C2H4, CH4, CH3CHO and C2H6 by-products were very low. Finally, the 2.5Rh-20Ce catalyst was selected according to its catalytic activity and characterization results in order to run a stability test, which lasted more than 115 hours under stable operation. The last chapter, Chapter 6, summarizes the main conclusions achieved throughout this Thesis work. Although very high reactant conversions and rich hydrogen mixtures were obtained using a fixed bed reaction system, the use of microreactors improves the key issues, heat and mass transfer limitations, through which the reforming reactions are intensified. Therefore, they seem to be a very interesting and promising alternative for process intensification and decentralized production for remote application.
Resumo:
207 p.
Resumo:
This paper collects most of the information gathered between October 1974 and July 1976 within the framework of a research program concerning the hydrobioclimate of ivorian lagoons and especially the Ebrié lagoon. Monthly surveys concerning the latter were carried out during 1975. The following parameters - and their vertical distribution wherever it had a meaning - were systematically gathered in a system of fifty-five stations: Transparency (Secchi), Temperature, Salinity, Chlorophylla, Dissolved oxygen, phosphate, nitrate, nitrite. These data provide an outline of the annual cycle of nutrients and primary production of the Ivoirian lagoons
Resumo:
This work is the result of one year of investigations on the artisanal fisheries of the Aby-Tendo-Ehy lagoon. The structure of fish catches varies with the fisheries zones and the fishing gears, but is relatively stable all year along, in the spite of the existence of some species with well worked seasonary cycle. The composition of beach seines catches, which are relatively unselective fishing gears, is: - in the Tendo lagoon (oligohaline) and Ehy lagoon (freshwater): Chrysichthys spp. 35.1%, Tilapia spp. 18.9%, Acentrogobius schlegelii 15.7%, Ethmalosa fimbriata 12% (those are two seasonary species), Tylochromis jentinki 8.8%, Elops lacerta 5.6%, other species 3.9%. - in the south of the Aby lagoon, under tide influence, Ethmalosa fimbriata 79%, Elops lacerta 12%, Chrysichthys spp. 6%, other species 3%. A preliminary estimation of 7900 tons for this lagoon artisanal fisheries total production is made for 1979 (from representative fishing villages) and can be shared as follows: - beach seines: 5300 tons; - purse seines and "syndicat" seines: 2600 tons; individual fishing: not estimated, it mostly concerns fill nets.
Resumo:
Quantitative relationships between nitrate distribution, chlorophyll and primary integrated values have been used to evaluate the phytoplankton abundance in the Gulf of Guinea. Data of Guinee I cruise (May-July 1968) of the R.V. Jean Charcot have been used. They show a large oligotrophic convergence area (< 250 mg C/m2/J). A relationship previously found between the depth of the nitracline (first level where the nitrate appears) and the depth of the thermal maximum gradient is confirmed. From a practical point of view, this relationship is very useful since it allows, when the biological or chemical data are not available, a rough estimation of phytoplankton integrated biomass and production in the water column, from a temperature profile.
Resumo:
The authors have developed the method used by Pianet and Le Hir (Doc.Sci.Cent. ORSTOM Pointe-Noire, 17, 1971) for the study of albacore (Thunnus albacares) in the Pointe-Noire region. The method is based on the fact that the ratio between unit of effort and number of fish for two fishing gears is equal to the ratio of their catchability coefficients.
Resumo:
Primary and secondary productions and nutrient regeneration in the Mauritanian upwelling area were studied by following a drogue for 9 days, from the point of upwelling till the water mass dives under offshore waters. The lag between phytoplanktonic bloom, zooplanktonic peak and bacterial activity is very short and may be explained by a well-settled biological cycle connected with an undercurrent. Organic production was estimated in two ways: (1) from chlorophyll 'a' values, considering a C/Chla ratio of 25 during the 5.5 day phytoplankton growth period, primary production computed by this method reaches 13.5 g C/m2; (2) from 14C values net primary production calculated for the same period reaches 10.5 g C/m2 and total organic production (net production + organic excretion) reaches 19.5 g C/m2. Organic production computed ratios, delta O/ delta C/ delta N/ delta Si/ delta P are equal to 130/43/11/7.4/1. Secondary production and 'grazing' are estimated from mesozooplankton respiration values and have a huge increase during the bloom. Net secondary production is assessed to be 1.0-4.2 g C/m2 for 6 days. Evidence of nutrient regeneration as ammonia, phosphate and silicate is given and regeneration rates are calculated. Zooplankton excretion plays an important part in nitrogen and phosphorus regeneration. Bacterial activity is induced by zooplankton organic excretion, then increased by phytoplankton decomposition at the end of the bloom.
Resumo:
Biomass and metabolic rates (total nitrogen and phosphorus excretion and respiration) were measured at 4 stations, representative of the lagoon environment, during high-water (Oct-Nov), dry (Dec-Jan) and rainy (July) seasons. In low-salinity waters (4o/oo) Acartia clausi is almost the only species, whereas a marine and diversified fauna is brought in from the ocean during the dry season. O/NT and O/PT atomic ratios between respiration (O) and total nitrogen (NT) and phosphorus (PT) excretions are high (15.1 and 111, respectively) and show a marked hydrocarbon feeding of zooplankton. Production was assessed from excretion via the net growth efficiency coefficient, K2 , calculated from N/P ratios for particles (a1), zooplankton excretion (a2) and constitution (a3). Daily productivity indices (i.e. daily production/biomass ratio) are high and equivalent to 1.2-3.8 day turn-over times. These high values may be ascribed to high temperatures (26.5-30 C) and phytoplankton richness (surface chlorophyll 'a' concentrations are always greater than 4 mg/m-3). Finally, the paper deals with trophic relationships between phyto- and zooplankton (ingestion /primary production ratio and transfer coefficient) and the question of relationships between zooplankton and predators.