970 resultados para Closed caption
Resumo:
In this thesis membrane filtration of paper machnie clear filtrate was studied. The aim of the study was to find membrane processes which are able to produce economically water of sufficient purity from paper machine white water or its saveall clarified fractions for reuse in the paper machnie short circulation. Factors affecting membrane fouling in this application were also studied. The thesis gives an overview af experiments done on a laboratory and a pilot scale with several different membranes and membrane modules. The results were judged by the obtained flux, the fouling tendency and the permeate quality assessed with various chemical analyses. It was shown that membrane modules which used a turbulence promotor of some kind gave the highest fluexes. However, the results showed that the greater the reduction in the concentration polarisation layer caused by increased turbulence in the module, the smaller the reductions in measured substances. Out of the micro-, ultra- and nanofiltration membranes tested, only nanofiltration memebranes produced permeate whose quality was very close to that of the chemically treated raw water used as fresh water in most paper mills today and which should thus be well suited for reuse as shower water both in the wire and press section. It was also shown that a one stage nanofiltration process was more effective than processes in which micro- or ultrafiltration was used as pretreatment for nanofiltration. It was generally observed that acidic pH, high organic matter content, the presence of multivalent ions, hydrophobic membrane material and high membrane cutoff increased the fouling tendency of the membranes.
Resumo:
Theultimate goal of any research in the mechanism/kinematic/design area may be called predictive design, ie the optimisation of mechanism proportions in the design stage without requiring extensive life and wear testing. This is an ambitious goal and can be realised through development and refinement of numerical (computational) technology in order to facilitate the design analysis and optimisation of complex mechanisms, mechanical components and systems. As a part of the systematic design methodology this thesis concentrates on kinematic synthesis (kinematic design and analysis) methods in the mechanism synthesis process. The main task of kinematic design is to find all possible solutions in the form of structural parameters to accomplish the desired requirements of motion. Main formulations of kinematic design can be broadly divided to exact synthesis and approximate synthesis formulations. The exact synthesis formulation is based in solving n linear or nonlinear equations in n variables and the solutions for the problem areget by adopting closed form classical or modern algebraic solution methods or using numerical solution methods based on the polynomial continuation or homotopy. The approximate synthesis formulations is based on minimising the approximation error by direct optimisation The main drawbacks of exact synthesis formulationare: (ia) limitations of number of design specifications and (iia) failure in handling design constraints- especially inequality constraints. The main drawbacks of approximate synthesis formulations are: (ib) it is difficult to choose a proper initial linkage and (iib) it is hard to find more than one solution. Recentformulations in solving the approximate synthesis problem adopts polynomial continuation providing several solutions, but it can not handle inequality const-raints. Based on the practical design needs the mixed exact-approximate position synthesis with two exact and an unlimited number of approximate positions has also been developed. The solutions space is presented as a ground pivot map but thepole between the exact positions cannot be selected as a ground pivot. In this thesis the exact synthesis problem of planar mechanism is solved by generating all possible solutions for the optimisation process ¿ including solutions in positive dimensional solution sets - within inequality constraints of structural parameters. Through the literature research it is first shown that the algebraic and numerical solution methods ¿ used in the research area of computational kinematics ¿ are capable of solving non-parametric algebraic systems of n equations inn variables and cannot handle the singularities associated with positive-dimensional solution sets. In this thesis the problem of positive-dimensional solutionsets is solved adopting the main principles from mathematical research area of algebraic geometry in solving parametric ( in the mathematical sense that all parameter values are considered ¿ including the degenerate cases ¿ for which the system is solvable ) algebraic systems of n equations and at least n+1 variables.Adopting the developed solution method in solving the dyadic equations in direct polynomial form in two- to three-precision-points it has been algebraically proved and numerically demonstrated that the map of the ground pivots is ambiguousand that the singularities associated with positive-dimensional solution sets can be solved. The positive-dimensional solution sets associated with the poles might contain physically meaningful solutions in the form of optimal defectfree mechanisms. Traditionally the mechanism optimisation of hydraulically driven boommechanisms is done at early state of the design process. This will result in optimal component design rather than optimal system level design. Modern mechanismoptimisation at system level demands integration of kinematic design methods with mechanical system simulation techniques. In this thesis a new kinematic design method for hydraulically driven boom mechanism is developed and integrated in mechanical system simulation techniques. The developed kinematic design method is based on the combinations of two-precision-point formulation and on optimisation ( with mathematical programming techniques or adopting optimisation methods based on probability and statistics ) of substructures using calculated criteria from the system level response of multidegree-of-freedom mechanisms. Eg. by adopting the mixed exact-approximate position synthesis in direct optimisation (using mathematical programming techniques) with two exact positions and an unlimitednumber of approximate positions the drawbacks of (ia)-(iib) has been cancelled.The design principles of the developed method are based on the design-tree -approach of the mechanical systems and the design method ¿ in principle ¿ is capable of capturing the interrelationship between kinematic and dynamic synthesis simultaneously when the developed kinematic design method is integrated with the mechanical system simulation techniques.
Resumo:
Cardiac failure is one of the leading causes of mortality in developed countries. As life expectancies of the populations of these countries grow, the number of patients suffering from cardiac insufficiency also increase. Effective treatments including the use of calcium sensitisers are being sought. They cause a positive inodilatory effect on cardio-myocytes without deleterious effects (arrhythmias) resulting from increases in intracellular calcium concentration. Levosimendan is a novel calcium sensitiser that hasbeen proved to be a welltolerated and effective treatment for patients with severe decompensated heart failure. Cardiac troponin C (cTnC) is its target protein. However, there have been controversies about the interactions between levosimendan and cTnC. Some of these controversies have been addressed in this dissertation. Furthermore, studies on the calcium sensitising mechanism based on the interactions between levosimendan and cTnC as followed by nuclear magnetic resonance(NMR) are presented and discussed. Levosimendan was found to interact with bothdomains of the calcium-saturated cTnC in the absence of cardiac troponin I (cTnI). In the presence of cTnI, the C-domain binding site was blocked and levosimendan interacted only with the regulatory domain of cTnC. This interaction may have caused the observed calcium sensitising effect by priming the N-domain for cTnI binding thereby extending the lifetime of that complex. It is suggested that this is achieved by shifting the equilibrium between open and closed conformations.
Resumo:
The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.
Resumo:
Using numerical simulations we investigate how overall dimensions of random knots scale with their length. We demonstrate that when closed non-self-avoiding random trajectories are divided into groups consisting of individual knot types, then each such group shows the scaling exponent of approximately 0.588 that is typical for self-avoiding walks. However, when all generated knots are grouped together, their scaling exponent becomes equal to 0.5 (as in non-self-avoiding random walks). We explain here this apparent paradox. We introduce the notion of the equilibrium length of individual types of knots and show its correlation with the length of ideal geometric representations of knots. We also demonstrate that overall dimensions of random knots with a given chain length follow the same order as dimensions of ideal geometric representations of knots.
Resumo:
Background: Noroviruses are one of the principal biological agents associated with the consumption of contaminated food. The objective of this study was to analyse the size and epidemiological characteristics of foodborne outbreaks of gastroenteritis in Catalonia, a region in the northeast of Spain. Methods: In all reported outbreaks of gastroenteritis associated with food consumption, faecal samples of persons affected were analysed for bacteria and viruses and selectively for parasites. Study variables included the setting, the number of people exposed, age, sex, clinical signs and hospital admissions. The study was carried out from October 2004 to October 2005. Results: Of the 181 outbreaks reported during the study period, 72 were caused by Salmonella and 30 by norovirus (NoV); the incidence rates were 14.5 and 9.9 per 100,000 person-years, respectively. In 50% of the NoV outbreaks and 27% of the bacterial outbreaks (p = 0.03) the number of persons affected was ≥10; 66.7% of NoV outbreaks occurred in restaurants; no differences in the attack rates were observed according to the etiology. Hospitalizations were more common (p = 0.03) in bacterial outbreaks (8.6%) than in NoV outbreaks (0.15%). Secondary cases accounted for 4% of cases in NoV outbreaks compared with 0.3% of cases in bacterial outbreaks (p < 0.001) Conclusion: Norovirus outbreaks were larger but less frequent than bacterial outbreaks, suggesting that underreporting is greater for NoV outbreaks. Food handlers should receive training on the transmission of infections in diverse situations. Very strict control measures on handwashing and environmental disinfection should be adopted in closed or partially-closed institutions.
Resumo:
The paper is motivated by the valuation problem of guaranteed minimum death benefits in various equity-linked products. At the time of death, a benefit payment is due. It may depend not only on the price of a stock or stock fund at that time, but also on prior prices. The problem is to calculate the expected discounted value of the benefit payment. Because the distribution of the time of death can be approximated by a combination of exponential distributions, it suffices to solve the problem for an exponentially distributed time of death. The stock price process is assumed to be the exponential of a Brownian motion plus an independent compound Poisson process whose upward and downward jumps are modeled by combinations (or mixtures) of exponential distributions. Results for exponential stopping of a Lévy process are used to derive a series of closed-form formulas for call, put, lookback, and barrier options, dynamic fund protection, and dynamic withdrawal benefit with guarantee. We also discuss how barrier options can be used to model lapses and surrenders.
Resumo:
The concept of temporal 'plus' epilepsy (T+E) is not new, and a number of observations made by means of intracerebral electrodes have illustrated the complexity of neuronal circuits that involve the temporal lobe. The term T+E was used to unify and better individualize these specific forms of multilobar epilepsies, which are characterized by electroclinical features primarily suggestive of temporal lobe epilepsy, MRI findings that are either unremarkable or show signs of hippocampal sclerosis, and intracranial recordings which demonstrate that seizures arise from a complex epileptogenic network including a combination of brain regions located within the temporal lobe and over closed neighbouring structures such as the orbitofrontal cortex, the insulo-opercular region, and the temporo-parieto-occipital junction. We will review here how the term of T+E has emerged, what it means, and which practical consideration it raises.
Resumo:
BACKGROUND: Infected postpneumonectomy chest cavities may be related to chronic postpneumonectomy empyema or arise in rare situations of necrotizing pneumonia with complete lung destruction where pneumonectomy and pleural debridement are required. We evaluated the safety and efficacy of an intrathoracic vacuum-assisted closure device (VAC) for the treatment of infected postpneumonectomy chest cavities. METHOD: A retrospective single institution review of all patients with infected postpneumonectomy chest cavities treated by VAC between 2005 and 2013. Patients underwent surgical debridement of the thoracic cavity, muscle flap closure of the bronchial stump when a fistula was present, and repeated intrathoracic VAC dressings until granulation tissue covered the entire chest cavity. After this, the cavity was obliterated by a Clagett procedure and closed. RESULTS: Twenty-one patients (14 men and 7 women) underwent VAC treatment of their infected postpneumonectomy chest cavity. Twelve patients presented with a chronic postpneumonectomy empyema (10 of them with a bronchopleural fistula) and 9 patients with an empyema occurring in the context of necrotizing pneumonia treated by pneumonectomy. In-hospital mortality was 23%. The median duration of VAC therapy was 23 days (range, 4-61 days) and the median number of VAC changes per patient was 6 (range, 2-14 days). Infection control and successful chest cavity closure was achieved in all surviving patients. One adverse VAC treatment-related event was identified (5%). CONCLUSIONS: The intrathoracic VAC application is a safe and efficient treatment of infected postpneumonectomy chest cavities and allows the preservation of chest wall integrity.
Resumo:
This research was done to study the reproductive system of papaya hermaphrodite plant based on the histochemical nature of pollen grain, stigma receptivity, in vivo pollen grain germination and pollen:ovule ratio. In the histochemical analysis, pollen grains were stained by using Sudan IV and I2KI solution ; the stigma receptivity was assessed by alpha-naphthtyl acetate solution in closed and opened flowers. Pollen germination and pollen tube growing were examined in flower buds near anthesis with 0.1% aniline blue. To estimate the pollen:ovule ratio , anthers from each flower bud were dissected and all pollen grains were counted; ovules were dissected from ovaries and were counted under stereomicroscope. The results indicated that papaya pollen grains are of lipidic nature; the stigmas were receptive before the opening and until 48 hours after opening; the pollen grains germinated and emitted polinic tube before flower opening and the pollen:ovule ratio indicated the predominance of autogamous reproductive system. These results indicate that hermaphrodite papaya trees is preferentially of optional autogamous with cleistogamy.