973 resultados para Climate change. Coastal zone. Vulnerability. MSL. Natal. Rio Grande do Norte
Resumo:
Building resilience to climate change in agricultural production can ensure the functioning of agricultural-based livelihoods and reduce their vulnerability to climate change impacts. This paper thus explores how buffer capacity, a characteristic feature of resilience, can be conceptualised and used for assessing the resilience of smallholder agriculture to climate change. It uses the case of conservation agriculture farmers in a Kenyan region and examines how their practices contribute to buffer capacity. Surveys were used to collect data from 41 purposely selected conservation agriculture farmers in the Laikipia region of Kenya. Besides descriptive statistics, factor analysis was used to identify the key dimensions that characterise buffer capacity in the study context. The cluster of practices characterising buffer capacity in conservation agriculture include soil protection, adapted crops, intensification/irrigation, mechanisation and livelihood diversification. Various conservation practices increase buffer capacity, evaluated by farmers in economic, social, ecological and other dimensions. Through conservation agriculture, most farmers improved their productivity and incomes despite drought, improved their environment and social relations. Better-off farmers also reduced their need for labour, but this resulted in lesser income-earning opportunities for the poorer farmers, thus reducing the buffer capacity and resilience of the latter.
Resumo:
A higher risk of future range losses as a result of climate change is expected to be one of the main drivers of extinction trends in vascular plants occurring in habitat types of high conservation value. Nevertheless, the impact of the climate changes of the last 60 years on the current distribution and extinction patterns of plants is still largely unclear. We applied species distribution models to study the impact of environmental variables (climate, soil conditions, land cover, topography), on the current distribution of 18 vascular plant species characteristic of three threatened habitat types in southern Germany: (i) xero-thermophilous vegetation, (ii) mesophilous mountain grasslands (mountain hay meadows and matgrass communities), and (iii) wetland habitats (bogs, fens, and wet meadows). Climate and soil variables were the most important variables affecting plant distributions at a spatial level of 10 × 10 km. Extinction trends in our study area revealed that plant species which occur in wetland habitats faced higher extinction risks than those in xero-thermophilous vegetation, with the risk for species in mesophilous mountain grasslands being intermediary. For three plant species characteristic either of mesophilous mountain grasslands or wetland habitats we showed exemplarily that extinctions from 1950 to the present day have occurred at the edge of the species’ current climatic niche, indicating that climate change has likely been the main driver of extinction. This is largely consistent with current extinction trends reported in other studies. Our study indicates that the analysis of past extinctions is an appropriate means to assess the impact of climate change on species and that vulnerability to climate change is both species- and habitat-specific.
Resumo:
• Premise of the study: Because not all plant species will be able to move in response to global warming, adaptive evolution matters largely for plant persistence. As prerequisites for adaptive evolution, genetic variation in and selection on phenotypic traits are needed, but these aspects have not been studied in tropical species. We studied how plants respond to transplantation to different elevations on Mt. Kilimanjaro, Tanzania, and whether there is quantitative genetic (among-seed family) variation in and selection on life-history traits and their phenotypic plasticity to the different environments. • Methods: We reciprocally transplanted seed families of 15 common tropical, herbaceous species of the montane and savanna vegetation zone at Mt. Kilimanjaro to a watered experimental garden in the montane (1450 m) and in the savanna (880 m) zone at the mountain’s slope and measured performance, reproductive, and phenological traits. • Results: Plants generally performed worse in the savanna garden, indicating that the savanna climate was more stressful and thus that plants may suffer from future climate warming. We found significant quantitative genetic variation in all measured performance and reproductive traits in both gardens and for several measures of phenotypic plasticity in response to elevational transplantation. Moreover, we found positive selection on traits at low and intermediate trait values levelling to neutral or negative selection at high values. • Conclusions: We conclude that common plants at Mt. Kilimanjaro express quantitative genetic variation in fitness-relevant traits and in their plasticities, suggesting potential to adapt evolutionarily to future climate warming and increased temperature variability.
Resumo:
In recent years, disaster preparedness through assessment of medical and special needs persons (MSNP) has taken a center place in public eye in effect of frequent natural disasters such as hurricanes, storm surge or tsunami due to climate change and increased human activity on our planet. Statistical methods complex survey design and analysis have equally gained significance as a consequence. However, there exist many challenges still, to infer such assessments over the target population for policy level advocacy and implementation. ^ Objective. This study discusses the use of some of the statistical methods for disaster preparedness and medical needs assessment to facilitate local and state governments for its policy level decision making and logistic support to avoid any loss of life and property in future calamities. ^ Methods. In order to obtain precise and unbiased estimates for Medical Special Needs Persons (MSNP) and disaster preparedness for evacuation in Rio Grande Valley (RGV) of Texas, a stratified and cluster-randomized multi-stage sampling design was implemented. US School of Public Health, Brownsville surveyed 3088 households in three counties namely Cameron, Hidalgo, and Willacy. Multiple statistical methods were implemented and estimates were obtained taking into count probability of selection and clustering effects. Statistical methods for data analysis discussed were Multivariate Linear Regression (MLR), Survey Linear Regression (Svy-Reg), Generalized Estimation Equation (GEE) and Multilevel Mixed Models (MLM) all with and without sampling weights. ^ Results. Estimated population for RGV was 1,146,796. There were 51.5% female, 90% Hispanic, 73% married, 56% unemployed and 37% with their personal transport. 40% people attained education up to elementary school, another 42% reaching high school and only 18% went to college. Median household income is less than $15,000/year. MSNP estimated to be 44,196 (3.98%) [95% CI: 39,029; 51,123]. All statistical models are in concordance with MSNP estimates ranging from 44,000 to 48,000. MSNP estimates for statistical methods are: MLR (47,707; 95% CI: 42,462; 52,999), MLR with weights (45,882; 95% CI: 39,792; 51,972), Bootstrap Regression (47,730; 95% CI: 41,629; 53,785), GEE (47,649; 95% CI: 41,629; 53,670), GEE with weights (45,076; 95% CI: 39,029; 51,123), Svy-Reg (44,196; 95% CI: 40,004; 48,390) and MLM (46,513; 95% CI: 39,869; 53,157). ^ Conclusion. RGV is a flood zone, most susceptible to hurricanes and other natural disasters. People in the region are mostly Hispanic, under-educated with least income levels in the U.S. In case of any disaster people in large are incapacitated with only 37% have their personal transport to take care of MSNP. Local and state government’s intervention in terms of planning, preparation and support for evacuation is necessary in any such disaster to avoid loss of precious human life. ^ Key words: Complex Surveys, statistical methods, multilevel models, cluster randomized, sampling weights, raking, survey regression, generalized estimation equations (GEE), random effects, Intracluster correlation coefficient (ICC).^
Resumo:
Lake Baikal, the world's most voluminous freshwater lake, has experienced unprecedented warming during the last decades. A uniquely diverse amphipod fauna inhabits the littoral zone and can serve as a model system to identify the role of thermal tolerance under climate change. This study aimed to identify sublethal thermal constraints in two of the most abundant endemic Baikal amphipods, Eulimnogammarus verrucosus and Eulimnogammarus cyaneus, and Gammarus lacustris, a ubiquitous gammarid of the Holarctic. As the latter is only found in some shallow isolated bays of the lake, we further addressed the question whether rising temperatures could promote the widespread invasion of this non-endemic species into the littoral zone. Animals were exposed to gradual temperature increases (4 week, 0.8 °C/d; 24 h, 1 °C/h) starting from the reported annual mean temperature of the Baikal littoral (6 °C). Within the framework of oxygen- and capacity-limited thermal tolerance (OCLTT), we used a nonlinear regression approach to determine the points at which the changing temperature-dependence of relevant physiological processes indicates the onset of limitation. Limitations in ventilation representing the first limits of thermal tolerance (pejus (= "getting worse") temperatures (Tp)) were recorded at 10.6 (95% confidence interval; 9.5, 11.7), 19.1 (17.9, 20.2), and 21.1 (19.8, 22.4) °C in E. verrucosus, E. cyaneus, and G. lacustris, respectively. Field observations revealed that E. verrucosus retreated from the upper littoral to deeper and cooler waters once its Tp was surpassed, identifying Tp as the ecological thermal boundary. Constraints in oxygen consumption at higher than critical temperatures (Tc) led to an exponential increase in mortality in all species. Exposure to short-term warming resulted in higher threshold values, consistent with a time dependence of thermal tolerance. In conclusion, species-specific limits to oxygen supply capacity are likely key in the onset of constraining (beyond pejus) and then life-threatening (beyond critical) conditions. Ecological consequences of these limits are mediated through behavioral plasticity in E. verrucosus. However, similar upper thermal limits in E. cyaneus (endemic, Baikal) and G. lacustris (ubiquitous, Holarctic) indicate that the potential invader G. lacustris would not necessarily benefit from rising temperatures. Secondary effects of increasing temperatures remain to be investigated.
Resumo:
There is evidence that the climate changes and that now, the change is influenced and accelerated by the CO2 augmentation in atmosphere due to combustion by humans. Such ?Climate change? is on the policy agenda at the global level, with the aim of understanding and reducing its causes and to mitigate its consequences. In most countries and international organisms UNO (e.g. Rio de Janeiro 1992), OECD, EC, etc . . . the efforts and debates have been directed to know the possible causes, to predict the future evolution of some variable conditioners, and trying to make studies to fight against the effects or to delay the negative evolution of such. The Protocol of Kyoto 1997 set international efforts about CO2 emissions, but it was partial and not followed e.g. by USA and China . . . , and in Durban 2011 the ineffectiveness of humanity on such global real challenges was set as evident. Among all that, the elaboration of a global model was not boarded that can help to choose the best alternative between the feasible ones, to elaborate the strategies and to evaluate the costs, and the authors propose to enter in that frame for study. As in all natural, technological and social changes, the best-prepared countries will have the best bear and the more rapid recover. In all the geographic areas the alternative will not be the same one, but the model must help us to make the appropriated decision. It is essential to know those areas that are more sensitive to the negative effects of climate change, the parameters to take into account for its evaluation, and comprehensive plans to deal with it. The objective of this paper is to elaborate a mathematical model support of decisions, which will allow to develop and to evaluate alternatives of adaptation to the climatic change of different communities in Europe and Latin-America, mainly in especially vulnerable areas to the climatic change, considering in them all the intervening factors. The models will consider criteria of physical type (meteorological, edaphic, water resources), of use of the ground (agriculturist, forest, mining, industrial, urban, tourist, cattle dealer), economic (income, costs, benefits, infrastructures), social (population), politician (implementation, legislation), educative (Educational programs, diffusion) and environmental, at the present moment and the future. The intention is to obtain tools for aiding to get a realistic position for these challenges, which are an important part of the future problems of humanity in next decades.
Resumo:
The effects of climate change will be felt by most farmers in Europe over the next decades. This study provides consistent results of the impact of climate change on arable agriculture in Europe by using high resolution climate data, socio-economic data, and impact assessment models, including farmer adaptation. All scenarios are consistent with the spatial distribution of effects, exacerbating regional disparities and current vulnerability to climate. Since the results assume no restrictions on the use of water for irrigation or on the application of agrochemicals, they may be considered optimistic from the production point of view and somewhat pessimistic from the environmental point of view. The results provide an estimate of the regional economic impact of climate change, as well as insights into the importance of mitigation and adaptation policies.
Resumo:
Comments This article is a U.S. government work, and is not subject to copyright in the United States. Abstract Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly 0.5 Mg ha 1 per °C. Doubling [CO2] from 360 to 720 lmol mol 1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.
Resumo:
Farmers in Africa are facing climate change and challenging rural livelihoods while maintaining agricultural systems that are not resilient. By 2050 the mean estimates of production of key staple crops in Africa such as maize, sorghum, millet, groundnut, and cassava are expected to decrease by between 8 and 22 percent (Schlenker and Lobell 2010). In Kenya, although projections of rainfall do not show dramatic decreases, the distribution of impacts is clearly negative for most crops. As increases in temperature will lead to increases in evapotranspiration, a potential increase in rainfall in Kenya may not offset the expected increases in agricultural water needs (Herrero et al. 2010). In order to respond to these present and future challenges, potential mitigation and adaptation options have been developed. However, implementation is not evident. In addition to their benefits in either mitigating or reducing the vulnerability of climate change effects, many of these options do not have economic costs and even provide economic benefits (e.g. savings in the consumption of energy or natural resources). Nevertheless, it is demonstrated that even when there are no biophysical, technological or economic constraints and despite their potential benefits from either the economic or environmental climate change point of view, not all farmers are willing to adopt these measures. This reflects the key role that behavioural barriers can play in the uptake of mitigation and adaptation measures.
Resumo:
Las alteraciones del sistema climático debido al aumento de concentraciones de gases de efecto invernadero (GEI) en la atmósfera, tendrán implicaciones importantes para la agricultura, el medio ambiente y la sociedad. La agricultura es una fuente importante de emisiones de gases de efecto invernadero (globalmente contribuye al 12% del total de GEI), y al mismo tiempo puede ser parte de la solución para mitigar las emisiones y adaptarse al cambio climático. Las acciones frente al desafío del cambio climático deben priorizar estrategias de adaptación y mitigación en la agricultura dentro de la agenda para el desarrollo de políticas. La agricultura es por tanto crucial para la conservación y el uso sostenible de los recursos naturales, que ya están sometidos a impactos del cambio climático, al mismo tiempo que debe suministrar alimentos para una población creciente. Por tanto, es necesaria una coordinación entre las actuales estrategias de política climática y agrícola. El concepto de agricultura climáticamente inteligente ha surgido para integrar todos estos servicios de la producción agraria. Al evaluar opciones para reducir las amenazas del cambio climático para la agricultura y el medio ambiente, surgen dos preguntas de investigación: • ¿Qué información es necesaria para definir prácticas agrarias inteligentes? • ¿Qué factores influyen en la implementación de las prácticas agrarias inteligentes? Esta Tesis trata de proporcionar información relevante sobre estas cuestiones generales con el fin de apoyar el desarrollo de la política climática. Se centra en sistemas agrícolas Mediterráneos. Esta Tesis integra diferentes métodos y herramientas para evaluar las alternativas de gestión agrícola y políticas con potencial para responder a las necesidades de mitigación y adaptación al cambio climático. La investigación incluye enfoques cuantitativos y cualitativos e integra variables agronómicas, de clima y socioeconómicas a escala local y regional. La investigación aporta una recopilación de datos sobre evidencia experimental existente, y un estudio integrado sobre el comportamiento de los agricultores y las posibles alternativas de cambio (por ejemplo, la tecnología, la gestión agrícola y la política climática). Los casos de estudio de esta Tesis - el humedal de Doñana (S España) y la región de Aragón (NE España) - permiten ilustrar dos sistemas Mediterráneos representativos, donde el uso intensivo de la agricultura y las condiciones semiáridas son ya una preocupación. Por este motivo, la adopción de estrategias de mitigación y adaptación puede desempeñar un papel muy importante a la hora de encontrar un equilibrio entre la equidad, la seguridad económica y el medio ambiente en los escenarios de cambio climático. La metodología multidisciplinar de esta tesis incluye una amplia gama de enfoques y métodos para la recopilación y el análisis de datos. La toma de datos se apoya en la revisión bibliográfica de evidencia experimental, bases de datos públicas nacionales e internacionales y datos primarios recopilados mediante entrevistas semi-estructuradas con los grupos de interés (administraciones públicas, responsables políticos, asesores agrícolas, científicos y agricultores) y encuestas con agricultores. Los métodos de análisis incluyen: meta-análisis, modelos de gestión de recursos hídricos (modelo WAAPA), análisis multicriterio para la toma de decisiones, métodos estadísticos (modelos de regresión logística y de Poisson) y herramientas para el desarrollo de políticas basadas en la ciencia. El meta-análisis identifica los umbrales críticos de temperatura que repercuten en el crecimiento y el desarrollo de los tres cultivos principales para la seguridad alimentaria (arroz, maíz y trigo). El modelo WAAPA evalúa el efecto del cambio climático en la gestión del agua para la agricultura de acuerdo a diferentes alternativas políticas y escenarios climáticos. El análisis multicriterio evalúa la viabilidad de las prácticas agrícolas de mitigación en dos escenarios climáticos de acuerdo a la percepción de diferentes expertos. Los métodos estadísticos analizan los determinantes y las barreras para la adopción de prácticas agrícolas de mitigación. Las herramientas para el desarrollo de políticas basadas en la ciencia muestran el potencial y el coste para reducir GEI mediante las prácticas agrícolas. En general, los resultados de esta Tesis proporcionan información sobre la adaptación y la mitigación del cambio climático a nivel de explotación para desarrollar una política climática más integrada y ayudar a los agricultores en la toma de decisiones. Los resultados muestran las temperaturas umbral y la respuesta del arroz, el maíz y el trigo a temperaturas extremas, siendo estos valores de gran utilidad para futuros estudios de impacto y adaptación. Los resultados obtenidos también aportan una serie de estrategias flexibles para la adaptación y la mitigación a escala local, proporcionando a su vez una mejor comprensión sobre las barreras y los incentivos para su adopción. La capacidad de mejorar la disponibilidad de agua y el potencial y el coste de reducción de GEI se han estimado para estas estrategias en los casos de estudio. Estos resultados podrían ayudar en el desarrollo de planes locales de adaptación y políticas regionales de mitigación, especialmente en las regiones Mediterráneas. ABSTRACT Alterations in the climatic system due to increased atmospheric concentrations of greenhouse gas emissions (GHG) are expected to have important implications for agriculture, the environment and society. Agriculture is an important source of GHG emissions (12 % of global anthropogenic GHG), but it is also part of the solution to mitigate emissions and to adapt to climate change. Responses to face the challenge of climate change should place agricultural adaptation and mitigation strategies at the heart of the climate change agenda. Agriculture is crucial for the conservation and sustainable use of natural resources, which already stand under pressure due to climate change impacts, increased population, pollution and fragmented and uncoordinated climate policy strategies. The concept of climate smart agriculture has emerged to encompass all these issues as a whole. When assessing choices aimed at reducing threats to agriculture and the environment under climate change, two research questions arise: • What information defines smart farming choices? • What drives the implementation of smart farming choices? This Thesis aims to provide information on these broad questions in order to support climate policy development focusing in some Mediterranean agricultural systems. This Thesis integrates methods and tools to evaluate potential farming and policy choices to respond to mitigation and adaptation to climate change. The assessment involves both quantitative and qualitative approaches and integrates agronomic, climate and socioeconomic variables at local and regional scale. The assessment includes the collection of data on previous experimental evidence, and the integration of farmer behaviour and policy choices (e.g., technology, agricultural management and climate policy). The case study areas -- the Doñana coastal wetland (S Spain) and the Aragón region (NE Spain) – illustrate two representative Mediterranean regions where the intensive use of agriculture and the semi-arid conditions are already a concern. Thus the adoption of mitigation and adaptation measures can play a significant role for reaching a balance among equity, economic security and the environment under climate change scenarios. The multidisciplinary methodology of this Thesis includes a wide range of approaches for collecting and analysing data. The data collection process include revision of existing experimental evidence, public databases and the contribution of primary data gathering by semi-structured interviews with relevant stakeholders (i.e., public administrations, policy makers, agricultural advisors, scientist and farmers among others) and surveys given to farmers. The analytical methods include meta-analysis, water availability models (WAAPA model), decision making analysis (MCA, multi-criteria analysis), statistical approaches (Logistic and Poisson regression models) and science-base policy tools (MACC, marginal abatement cost curves and SOC abatement wedges). The meta-analysis identifies the critical temperature thresholds which impact on the growth and development of three major crops (i.e., rice, maize and wheat). The WAAPA model assesses the effect of climate change for agricultural water management under different policy choices and climate scenarios. The multi-criteria analysis evaluates the feasibility of mitigation farming practices under two climate scenarios according to the expert views. The statistical approaches analyses the drivers and the barriers for the adoption of mitigation farming practices. The science-base policy tools illustrate the mitigation potential and cost effectiveness of the farming practices. Overall, the results of this Thesis provide information to adapt to, and mitigate of, climate change at farm level to support the development of a comprehensive climate policy and to assist farmers. The findings show the key temperature thresholds and response to extreme temperature effects for rice, maize and wheat, so such responses can be included into crop impact and adaptation models. A portfolio of flexible adaptation and mitigation choices at local scale are identified. The results also provide a better understanding of the stakeholders oppose or support to adopt the choices which could be used to incorporate in local adaptation plans and mitigation regional policy. The findings include estimations for the farming and policy choices on the capacity to improve water supply reliability, abatement potential and cost-effective in Mediterranean regions.
Resumo:
Species distribution models (SDM) predict species occurrence based on statistical relationships with environmental conditions. The R-package biomod2 which includes 10 different SDM techniques and 10 different evaluation methods was used in this study. Macroalgae are the main biomass producers in Potter Cove, King George Island (Isla 25 de Mayo), Antarctica, and they are sensitive to climate change factors such as suspended particulate matter (SPM). Macroalgae presence and absence data were used to test SDMs suitability and, simultaneously, to assess the environmental response of macroalgae as well as to model four scenarios of distribution shifts by varying SPM conditions due to climate change. According to the averaged evaluation scores of Relative Operating Characteristics (ROC) and True scale statistics (TSS) by models, those methods based on a multitude of decision trees such as Random Forest and Classification Tree Analysis, reached the highest predictive power followed by generalized boosted models (GBM) and maximum-entropy approaches (Maxent). The final ensemble model used 135 of 200 calculated models (TSS > 0.7) and identified hard substrate and SPM as the most influencing parameters followed by distance to glacier, total organic carbon (TOC), bathymetry and slope. The climate change scenarios show an invasive reaction of the macroalgae in case of less SPM and a retreat of the macroalgae in case of higher assumed SPM values.
Resumo:
We investigated long-term spatial variability in a number of Harmful Algal Blooms (HABs) in the northeast Atlantic and North Sea using data from the Continuous Plankton Recorder. Over the last four decades. some dinoflagellate taxa showed pronounced variation in the south and east of the North Sea, with the most significant increases being restricted to the adjacent waters off Norway. There was also a general decrease along the eastern coast of the United Kingdom. The most prominent feature in the interannual bloom frequencies over the last four decades was the anomalously high values recorded in the late 1980s in the northern and central North Sea areas. The only mesoscale area in the northeast Atlantic to show a significant increase in bloom formation over the last decade was the Norwegian coastal region. The changing spatial patterns of HAB taxa and the frequency of bloom formation are discussed in relation to regional climate change, in particular, changes in temperature, salinity, and the North Atlantic Oscillation (NAO). Areas highly vulnerable to the effects of regional climate change on HABs are Norwegian coastal waters and the Skagerrak. Other vulnerable areas include Danish coastal waters, and to a lesser extent, the German and Dutch Bight and the northern Irish Sea. Quite apart from eutrophication, our results give a preview of what might happen to certain HAB genera under changing climatic conditions in temperate environments and their responses to variability of climate oscillations Such as the NAO.