982 resultados para Classification Rules


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information was collated on the seed storage behaviour of 67 tree species native to the Amazon rainforest of Brazil; 38 appeared to show orthodox, 23 recalcitrant and six intermediate seed storage behaviour. A double-criteria key based on thousand-seed weight and seed moisture content at shedding to estimate likely seed storage behaviour, developed previously, showed good agreement with the above classifications. The key can aid seed storage behaviour identification considerably.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses ECG classification after parametrizing the ECG waveforms in the wavelet domain. The aim of the work is to develop an accurate classification algorithm that can be used to diagnose cardiac beat abnormalities detected using a mobile platform such as smart-phones. Continuous time recurrent neural network classifiers are considered for this task. Records from the European ST-T Database are decomposed in the wavelet domain using discrete wavelet transform (DWT) filter banks and the resulting DWT coefficients are filtered and used as inputs for training the neural network classifier. Advantages of the proposed methodology are the reduced memory requirement for the signals which is of relevance to mobile applications as well as an improvement in the ability of the neural network in its generalization ability due to the more parsimonious representation of the signal to its inputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses ECG signal classification after parametrizing the ECG waveforms in the wavelet domain. Signal decomposition using perfect reconstruction quadrature mirror filter banks can provide a very parsimonious representation of ECG signals. In the current work, the filter parameters are adjusted by a numerical optimization algorithm in order to minimize a cost function associated to the filter cut-off sharpness. The goal consists of achieving a better compromise between frequency selectivity and time resolution at each decomposition level than standard orthogonal filter banks such as those of the Daubechies and Coiflet families. Our aim is to optimally decompose the signals in the wavelet domain so that they can be subsequently used as inputs for training to a neural network classifier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in hardware technologies allow to capture and process data in real-time and the resulting high throughput data streams require novel data mining approaches. The research area of Data Stream Mining (DSM) is developing data mining algorithms that allow us to analyse these continuous streams of data in real-time. The creation and real-time adaption of classification models from data streams is one of the most challenging DSM tasks. Current classifiers for streaming data address this problem by using incremental learning algorithms. However, even so these algorithms are fast, they are challenged by high velocity data streams, where data instances are incoming at a fast rate. This is problematic if the applications desire that there is no or only a very little delay between changes in the patterns of the stream and absorption of these patterns by the classifier. Problems of scalability to Big Data of traditional data mining algorithms for static (non streaming) datasets have been addressed through the development of parallel classifiers. However, there is very little work on the parallelisation of data stream classification techniques. In this paper we investigate K-Nearest Neighbours (KNN) as the basis for a real-time adaptive and parallel methodology for scalable data stream classification tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

European researchers across heterogeneous disciplines voice concerns and argue for new paths towards a brighter future regarding scientific and knowledge creation and communication. Recently, in biological and natural sciences concerns have been expressed that major threats are intentionally ignored. These threats are challenging Europe’s future sustainability towards creating knowledge that effectively deals with emerging social, environmental, health, and economic problems of a planetary scope. Within social science circles however, the root cause regarding the above challenges, have been linked with macro level forces of neo-liberal ways of valuing and relevant rules in academia and beyond which we take for granted. These concerns raised by heterogeneous scholars in natural and the applied social sciences concern the ethics of today’s research and academic integrity. Applying Bourdieu’s sociology may not allow an optimistic lens if change is possible. Rather than attributing the replication of neo-liberal habitus in intentional agent and institutional choices, Bourdieu’s work raises the importance of thoughtlessly internalised habits in human and social action. Accordingly, most action within a given paradigm (in this case, neo-liberalism) is understood as habituated, i.e. unconsciously reproducing external social fields, even ill-defined ways of valuing. This essay analyses these and how they may help critically analyse the current habitus surrounding research and knowledge production, evaluation, and communication and related aspects of academic freedom. Although it is acknowledged that transformation is not easy, the essay presents arguments and recent theory paths to suggest that change nevertheless may be a realistic hope once certain action logics are encouraged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three coupled knowledge transfer partnerships used pattern recognition techniques to produce an e-procurement system which, the National Audit Office reports, could save the National Health Service £500 m per annum. An extension to the system, GreenInsight, allows the environmental impact of procurements to be assessed and savings made. Both systems require suitable products to be discovered and equivalent products recognised, for which classification is a key component. This paper describes the innovative work done for product classification, feature selection and reducing the impact of mislabelled data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend extreme learning machine (ELM) classifiers to complex Reproducing Kernel Hilbert Spaces (RKHS) where the input/output variables as well as the optimization variables are complex-valued. A new family of classifiers, called complex-valued ELM (CELM) suitable for complex-valued multiple-input–multiple-output processing is introduced. In the proposed method, the associated Lagrangian is computed using induced RKHS kernels, adopting a Wirtinger calculus approach formulated as a constrained optimization problem similarly to the conventional ELM classifier formulation. When training the CELM, the Karush–Khun–Tuker (KKT) theorem is used to solve the dual optimization problem that consists of satisfying simultaneously smallest training error as well as smallest norm of output weights criteria. The proposed formulation also addresses aspects of quaternary classification within a Clifford algebra context. For 2D complex-valued inputs, user-defined complex-coupled hyper-planes divide the classifier input space into four partitions. For 3D complex-valued inputs, the formulation generates three pairs of complex-coupled hyper-planes through orthogonal projections. The six hyper-planes then divide the 3D space into eight partitions. It is shown that the CELM problem formulation is equivalent to solving six real-valued ELM tasks, which are induced by projecting the chosen complex kernel across the different user-defined coordinate planes. A classification example of powdered samples on the basis of their terahertz spectral signatures is used to demonstrate the advantages of the CELM classifiers compared to their SVM counterparts. The proposed classifiers retain the advantages of their ELM counterparts, in that they can perform multiclass classification with lower computational complexity than SVM classifiers. Furthermore, because of their ability to perform classification tasks fast, the proposed formulations are of interest to real-time applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Involuntary musical imagery (INMI) is the subject of much recent research interest. INMI covers a number of experience types such as musical obsessions and musical hallucinations. One type of experience has been called earworms, for which the literature provides a number of definitions. In this paper we consider the origins of the term earworm in the German language literature and compare that usage with the English language literature. We consider the published literature on earworms and conclude that there is merit in distinguishing between earworms and other types of types of involuntary musical imagery described in the scientific literature: e.g. musical hallucinations, musical obsessions. We also describe other experiences that can be considered under the term INMI. The aim of future research could be to ascertain similarities and differences between types of INMI with a view to refining the classification scheme proposed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twitter has become a dependable microblogging tool for real time information dissemination and newsworthy events broadcast. Its users sometimes break news on the network faster than traditional newsagents due to their presence at ongoing real life events at most times. Different topic detection methods are currently used to match Twitter posts to real life news of mainstream media. In this paper, we analyse tweets relating to the English FA Cup finals 2012 by applying our novel method named TRCM to extract association rules present in hash tag keywords of tweets in different time-slots. Our system identify evolving hash tag keywords with strong association rules in each time-slot. We then map the identified hash tag keywords to event highlights of the game as reported in the ground truth of the main stream media. The performance effectiveness measure of our experiments show that our method perform well as a Topic Detection and Tracking approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report for the DETR on the operation of the Crichel Down Rules (July 2000). The Crichel Down Rules are non-statutory rules relating to the offer back to the previous owners of surplus government land that was acquired from the previous owners by, or under the threat of, compulsory purchase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews the literature concerning the practice of using Online Analytical Processing (OLAP) systems to recall information stored by Online Transactional Processing (OLTP) systems. Such a review provides a basis for discussion on the need for the information that are recalled through OLAP systems to maintain the contexts of transactions with the data captured by the respective OLTP system. The paper observes an industry trend involving the use of OLTP systems to process information into data, which are then stored in databases without the business rules that were used to process information and data stored in OLTP databases without associated business rules. This includes the necessitation of a practice, whereby, sets of business rules are used to extract, cleanse, transform and load data from disparate OLTP systems into OLAP databases to support the requirements for complex reporting and analytics. These sets of business rules are usually not the same as business rules used to capture data in particular OLTP systems. The paper argues that, differences between the business rules used to interpret these same data sets, risk gaps in semantics between information captured by OLTP systems and information recalled through OLAP systems. Literature concerning the modeling of business transaction information as facts with context as part of the modelling of information systems were reviewed to identify design trends that are contributing to the design quality of OLTP and OLAP systems. The paper then argues that; the quality of OLTP and OLAP systems design has a critical dependency on the capture of facts with associated context, encoding facts with contexts into data with business rules, storage and sourcing of data with business rules, decoding data with business rules into the facts with the context and recall of facts with associated contexts. The paper proposes UBIRQ, a design model to aid the co-design of data with business rules storage for OLTP and OLAP purposes. The proposed design model provides the opportunity for the implementation and use of multi-purpose databases, and business rules stores for OLTP and OLAP systems. Such implementations would enable the use of OLTP systems to record and store data with executions of business rules, which will allow for the use of OLTP and OLAP systems to query data with business rules used to capture the data. Thereby ensuring information recalled via OLAP systems preserves the contexts of transactions as per the data captured by the respective OLTP system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this article is to study the problem of pedestrian classification across different light spectrum domains (visible and far-infrared (FIR)) and modalities (intensity, depth and motion). In recent years, there has been a number of approaches for classifying and detecting pedestrians in both FIR and visible images, but the methods are difficult to compare, because either the datasets are not publicly available or they do not offer a comparison between the two domains. Our two primary contributions are the following: (1) we propose a public dataset, named RIFIR , containing both FIR and visible images collected in an urban environment from a moving vehicle during daytime; and (2) we compare the state-of-the-art features in a multi-modality setup: intensity, depth and flow, in far-infrared over visible domains. The experiments show that features families, intensity self-similarity (ISS), local binary patterns (LBP), local gradient patterns (LGP) and histogram of oriented gradients (HOG), computed from FIR and visible domains are highly complementary, but their relative performance varies across different modalities. In our experiments, the FIR domain has proven superior to the visible one for the task of pedestrian classification, but the overall best results are obtained by a multi-domain multi-modality multi-feature fusion.