965 resultados para Class III furcation defects


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benzhydroxamate (BHA) iron(III) complexes Fe(BHA)(L)ClICI (I, 2)], where L is (phenyl)dipicolylamine (phdpa in I) and (pyrenyl)dipicolylamine (pydpa in 2), were prepared and their photocytotoxicity in visible (400-700 nm) and red (600-720 nm) light was studied. Complex 1 was structurally characterized by X-ray crystallography. The complexes have high-spin iron(III) centers. Complex 2, with a pyrenyl fluorophore, was used for cellular imaging, showing both mitochondrial and nuclear localization in the fluorescence microscopic study. The complex exhibited photocytotoxicity in red light in HeLa cancer cells, giving IC50 value of 24.4(+/- 0.4) pM, but remained essentially non-toxic in the dark. The involvement of reactive oxygen species and an apoptotic nature of cell death were observed from the cellular studies. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reaction of cobalt(II) perchlorate hexahydrate with a potentially tetradentate Schiff base ligand, HL (2-methoxy-6-(2-diethylaminoethylimino)methyl]phenol) in presence of sodium azide and sodium thiocyanate yields two complexes Co( L)( HL)(N-3)]center dot ClO4 ( 1) and Co( L)( HL)(NCS)] center dot ClO4 ( 2); both being characterized by different physicochemical methods. Crystal structure of 1 was determined by single crystal X-ray diffraction while that of 2 was reported earlier. In 1, the central cobalt(III) adopts slightly distorted octahedral geometry with same donor set to that of 2. Catalytic efficacy of the complexes towards epoxidation of different alkenes under aerobic condition were investigated in homogeneous medium which reveals that 1 is better catalyst than 2 with respect to alkene oxidation, reflected from the turn over frequencies (TOF) measured at an optimum temperature of 60 degrees C in acetonitrile. (C) 2014 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Muscle-specific deficiency of iron-sulfur (Fe-S) cluster scaffold protein (ISCU) leads to myopathy. Results: Cells carrying the myopathy-associated G50E ISCU mutation demonstrate impaired Fe-S cluster biogenesis and mitochondrial dysfunction. Conclusion: Reduced mitochondrial respiration as a result of diminished Fe-S cluster synthesis results in muscle weakness in myopathy patients. Significance: The molecular mechanism behind disease progression should provide invaluable information to combat ISCU myopathy. Iron-sulfur (Fe-S) clusters are versatile cofactors involved in regulating multiple physiological activities, including energy generation through cellular respiration. Initially, the Fe-S clusters are assembled on a conserved scaffold protein, iron-sulfur cluster scaffold protein (ISCU), in coordination with iron and sulfur donor proteins in human mitochondria. Loss of ISCU function leads to myopathy, characterized by muscle wasting and cardiac hypertrophy. In addition to the homozygous ISCU mutation (g.7044GC), compound heterozygous patients with severe myopathy have been identified to carry the c.149GA missense mutation converting the glycine 50 residue to glutamate. However, the physiological defects and molecular mechanism associated with G50E mutation have not been elucidated. In this report, we uncover mechanistic insights concerning how the G50E ISCU mutation in humans leads to the development of severe ISCU myopathy, using a human cell line and yeast as the model systems. The biochemical results highlight that the G50E mutation results in compromised interaction with the sulfur donor NFS1 and the J-protein HSCB, thus impairing the rate of Fe-S cluster synthesis. As a result, electron transport chain complexes show significant reduction in their redox properties, leading to loss of cellular respiration. Furthermore, the G50E mutant mitochondria display enhancement in iron level and reactive oxygen species, thereby causing oxidative stress leading to impairment in the mitochondrial functions. Thus, our findings provide compelling evidence that the respiration defect due to impaired biogenesis of Fe-S clusters in myopathy patients leads to manifestation of complex clinical symptoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new series of inorganic-organic hybrid framework compounds, Ln(2)(mu(3)-OH)(C4H4O5)(2)(C4H2O4)]center dot 2H(2)O, (Ln = Ce, Pr and Nd), have been prepared employing a hydrothermal method. Malic acid and fumaric acid form part of the structure. The malate units connect the lanthanide centers forming Ln-O-Ln two-dimensional layers, which are cross-linked by the fumarate units forming the three-dimensional structure. Extra framework water molecules form a dimer and occupy the channels. The water molecules can be reversibly adsorbed. The dehydrated structure did not show any differences in framework structure/ connectivity. The presence of lattice water provides a pathway for proton conductivity. Optical studies suggest an up-conversion behavior involving more than one photon for a neodymium compound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoluminescence (PL) of ZnO is shown to be dependent on the excitation intensity (EI) of the laser, and the substantial shift observed in the band to band transition is attributed to the heating effect. In order to understand this phenomenon in detail, we investigate the EI dependent PL of various ZnO samples systematically from liquid nitrogen (LN) to room temperature by varying the laser power. Some of the samples exhibit substantial red shift in the band to band transition with increasing EI even in LN environment, negligible effect is observed for others. Hence, our results strongly suggest that the EI dependent PL is not a characteristic of all ZnO samples. This indicates that laser-induced heating effect is not the dominant factor that governs the shifts in the PL spectra. Rather, the defect level excitation accounts for such observation. (C) 2014 AIP Publishing LLC.