979 resultados para Chromogenic Substrates
Resumo:
Due to their numerous novel technological applications ranging from the example of exhaust catalysts in the automotive industry to the catalytic production of hydro- gen, surface reactions on transition metal substrates have become to be one of the most essential subjects within the surface science community. Although numerous applications exist, there are many details in the different processes that, after many decades of research, remain unknown. There are perhaps as many applications for the corrosion resistant materials such as stainless steels. A thorough knowledge of the details of the simplest reactions occuring on the surfaces, such as oxidation, play a key role in the design of better catalysts, or corrosion resistant materials in the future. This thesis examines the oxidation of metal surfaces from a computational point of view mostly concentrating on copper as a model material. Oxidation is studied from the initial oxidation to the oxygen precovered surface. Important parameters for the initial sticking and dissociation are obtained. The saturation layer is thoroughly studied and the calculated results arecompared with available experimental results. On the saturated surface, some open questions still remain. The present calculations demonstrate, that the saturated part of the surface is excluded from being chemically reactive towards the oxygen molecules. The results suggest, that the reason for the chemical activity of the saturated surface is due to a strain effect occuring between the saturated areas of the surface.
Resumo:
Growth experiments showed that adenine and hypoxanthine can be used as nitrogen sources by several strains of K. pneumoniae under aerobic conditions. The assimilation of all nitrogens from these purines indicates that the catabolic pathway is complete and proceeds past allantoin. Here we identify the genetic system responsible for the oxidation of hypoxanthine to allantoin in K. pneumoniae. The hpx cluster consists of seven genes, for which an organization in four transcriptional units, hpxDE, hpxR, hpxO and hpxPQT, is proposed. The proteins involved in the oxidation of hypoxanthine (HpxDE) or uric acid (HpxO) did not display any similarity to other reported enzymes known to catalyze these reactions, but instead are similar to oxygenases acting on aromatic compounds. Expression of the hpx system is activated by nitrogen limitation and by the presence of specific substrates, with hpxDE and hpxPQT controlled by both signals. Nitrogen control of hpxPQT transcription, which depends on 54, is mediated by the Ntr system. In contrast, neither NtrC nor NAC is involved in the nitrogen control of hpxDE, which is dependent on 70 for transcription. Activation of these operons by the specific substrates is also mediated by different effectors and regulatory proteins. Induction of hpxPQT requires uric acid formation, whereas expression of hpxDE is induced by the presence of hypoxanthine through the regulatory protein HpxR. This LysR-type regulator binds to a TCTGC-N4-GCAAA site in the intergenic hpxD-hpxR region. When bound to this site for hpxDE activation, HpxR negatively controls its own transcription.
Resumo:
We present a detailed study on the morphology and magnetic properties of Co nanostructures deposited onto oxidized Si substrates by femtosecond pulsed laser deposition. Generally, Co disks of nanometric dimensions are obtained just above the ablation threshold, with a size distribution characterized by an increasingly larger number of disks as their size diminishes, and with a maximum disk size that depends on the laser power density. In Au/Co/Au structures, in-plane magnetic anisotropy is observed in all cases, with no indication of superparamagnetism regardless of the amount of material or the laser power density. Magnetic force microscopy observations show coexistence of single-domain and vortex states for the magnetic domain structure of the disks. Superconducting quantum interference device magnetometry and x-ray magnetic circular dichroism measurements point to saturation magnetization values lower than the bulk, probably due to partial oxidation of the Co resulting from incomplete coverage by the Au capping layer.
Resumo:
The objective of my thesis is to assess mechanisms of ecological community control in macroalgal communities in the Baltic Sea. In the top-down model, predatory fish feed on invertebrate mesograzers, releasing algae partly from grazing pressure. Such a reciprocal relationship is called trophic cascade. In the bottom-up model, nutrients increase biomass in the food chain. The nutrients are first assimilated by algae and, via food chain, increase also abundance of grazers and predators. Previous studies on oceanic shores have described these two regulative mechanisms in the grazer - alga link, but how they interact in the trophic cascades from fish to algae is still inadequately known. Because the top-down and bottom-up mechanisms are predicted to depend on environmental disturbances, such as wave stress and light, I have studied these models at two distinct water depths. There are five factorial field experiments behind the thesis, which were all conducted in the Finnish Archipelago Sea. In all the experiments, I studied macroalgal colonization - either density, filament length or biomass - on submerged colonization substrates. By excluding predatory fish and mesograzers from the algal communities, the studies compared the strength of the top-down control to natural algal communities. A part of the experimental units were, in addition, exposed to enriched nitrogen and phosphorus concentrations, which enabled testing of bottom-up control. These two models of community control were further investigated in shallow (<1 m) and deep (ca. 3 m) water. Moreover, the control mechanisms were also expected to depend on grazer species. Therefore different grazer species were enclosed into experimental units and their impacts on macroalgal communities were followed specifically. The community control in the Baltic rocky shores was found to follow theoretical predictions, which have not been confirmed by field studies before. Predatory fish limited grazing impact, which was seen as denser algal communities and longer algal filaments. Nutrient enrichment increased density and filament length of annual algae and, thus, changed the species composition of the algal community. The perennial alga Fucus vesiculosusA and the red alga Ceramium tenuicorne suffered from the increased nutrient availabilities. The enriched nutrient conditions led to denser grazer fauna, thereby causing strong top-down control over both the annual and perennial macroalgae. The strength of the top-down control seemed to depend on the density and diversity of grazers and predators as well as on the species composition of macroalgal assemblages. The nutrient enrichment led to, however, weaker limiting impact of predatory fish on grazer fauna, because fish stocks did not respond as quickly to enhanced resources in the environment as the invertebrate fauna. According to environmental stress model, environmental disturbances weaken the top-down control. For example, on a wave-exposed shore, wave stress causes more stress to animals close to the surface than deeper on the shore. Mesograzers were efficient consumers at both the depths, while predation by fish was weaker in shallow water. Thus, the results supported the environmental stress model, which predicts that environmental disturbance affects stronger the higher a species is in the food chain. This thesis assessed the mechanisms of community control in three-level food chains and did not take into account higher predators. Such predators in the Baltic Sea are, for example, cormorant, seals, white-tailed sea eagle, cod and salmon. All these predatory species were recently or are currently under intensive fishing, hunting and persecution, and their stocks have only recently increased in the region. Therefore, it is possible that future densities of top predators may yet alter the strengths of the controlling mechanisms in the Baltic littoral zone.
Resumo:
Notch is a membrane inserted protein activated by the membrane-inserted γ-secretase proteolytic complex. The Notch pathway is a potential therapeutic target for the treatment of renal diseases but also controls the function of other cells, requiring cell-targeting of Notch antagonists. Toward selective targeting, we have developed the γ-secretase inhibitor-based prodrugs 13a and 15a as substrates for γ-glutamyltranspeptidase (γ-GT) and/or γ-glutamylcyclotransferase (γ-GCT) as well as aminopeptidase A (APA), which are overexpressed in renal diseases, and have evaluated them in experimental in vitro and in vivo models. In nondiseased mice, the cleavage product from Ac-γ-Glu-γ-secretase inhibitor prodrug 13a (γ-GT-targeting and γ-GCT-targeting) but not from Ac-α-Glu-γ-secretase inhibitor prodrug 15a (APA-targeting) accumulated in kidneys when compared to blood and liver. Potential nephroprotective effects of the γ-secretase inhibitor targeted prodrugs were investigated in vivo in a mouse model of acute kidney injury, demonstrating that the expression of Notch1 and cleaved Notch1 could be selectively down-regulated upon treatment with the Ac-γ-Glu-γ-secretase-inhibitor 13a.
Resumo:
Fiber-reinforced composite as oral implant material: Experimental studies of glass fiber and bioactive glass in vitro and in vivo Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland 2008. Biocompatibility and mechanical properties are important variables that need to be determined when new materials are considered for medical implants. Special emphasis was placed on these characteristics in the present work, which aimed to investigate the potential of fiber-reinforced composite (FRC) material as an oral implant. Furthermore, the purpose of this study was to explore the effect of bioactive glass (BAG) on osseointegration of FRC implants. The biocompatibility and mechanical properties of FRC implants were studied both in vitro and in vivo. The mechanical properties of the bulk FRC implant were tested with a cantilever bending test, torsional test and push-out test. The biocompatibility was first evaluated with osteoblast cells cultured on FRC substrates. Bone bonding was determined with the mechanical push-out test and histological as well as histomorplanimetric evaluation. Implant surface was characterized with SEM and EDS analysis. The results of these studies showed that FRC implants can withstand the static load values comparably to titanium. Threaded FRC implants had significantly higher push-out strength than the threaded titanium implants. Cell culture study revealed no cytotoxic effect of FRC materials on the osteoblast-like-cells. Addition of BAG particles enhanced cell proliferation and mineralization of the FRC substrates The in vivo study showed that FRC implants can withstand static loading until failure without fracture. The results also suggest that the FRC implant is biocompatible in bone. The biological behavior of FRC was comparable to that of titanium after 4 and 12 weeks of implantation. Furthermore, addition of BAG to FRC implant increases peri-implant osteogenesis and bone maturation.
Resumo:
Chromogenic immunohistochemistry (IHC) is omnipresent in cancer diagnosis, but has also been criticized for its technical limit in quantifying the level of protein expression on tissue sections, thus potentially masking clinically relevant data. Shifting from qualitative to quantitative, immunofluorescence (IF) has recently gained attention, yet the question of how precisely IF can quantify antigen expression remains unanswered, regarding in particular its technical limitations and applicability to multiple markers. Here we introduce microfluidic precision IF, which accurately quantifies the target expression level in a continuous scale based on microfluidic IF staining of standard tissue sections and low-complexity automated image analysis. We show that the level of HER2 protein expression, as continuously quantified using microfluidic precision IF in 25 breast cancer cases, including several cases with equivocal IHC result, can predict the number of HER2 gene copies as assessed by fluorescence in situ hybridization (FISH). Finally, we demonstrate that the working principle of this technology is not restricted to HER2 but can be extended to other biomarkers. We anticipate that our method has the potential of providing automated, fast and high-quality quantitative in situ biomarker data using low-cost immunofluorescence assays, as increasingly required in the era of individually tailored cancer therapy.
Resumo:
All the experimental part of this final project was done at Laboratoire de Biotechnologie Environnementale (LBE) from the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, during 6 months (November 2013- May 2014). A fungal biofilter composed of woodchips was designed in order to remove micropollutants from the effluents of waste water treatment plants. Two fungi were tested: Pleurotus ostreatus and Trametes versicolor in order to evaluate their efficiency for the removal of two micropollutants: the anti-inflammatory drug naproxen and the antibiotic sulfamethoxazole,. Although Trametes versicolor was able to degrade quickly naproxen, this fungus was not any more active after one week of operation in the filter. Pleurotus ostreatus was, on contrary, able to survive more than 3 months in the filter, showing good removal efficiencies of naproxen and sulfamethoxazole during all this period, in tap water but also in real treated municipal wastewater. Several other experiments have provided insight on the removal mechanisms of these micropollutants in the fungal biofilter (degradation and adsorption) and also allowed to model the removal trend. Fungal treatment with Pleurotus ostreatus grown on wood substrates appeared to be a promising solution to improve micropollutants removal in wastewater.
Resumo:
The issue of how contractility and adhesion are related to cell shape and migration pattern remains largely unresolved. In this paper we report that Gleevec (Imatinib), an Abl family kinase inhibitor, produces a profound change in the shape and migration of rat bladder tumor cells (NBTII) plated on collagen-coated substrates. Cells treated with Gleevec adopt a highly spread D-shape and migrate more rapidly with greater persistence. Accompanying this more spread state is an increase in integrin-mediated adhesion coupled with increases in the size and number of discrete adhesions. In addition, both total internal reflection fluorescence microscopy (TIRFM) and interference reflection microscopy (IRM) revealed a band of small punctate adhesions with rapid turnover near the cell leading margin. These changes led to an increase in global cell-substrate adhesion strength, as assessed by laminar flow experiments. Gleevec-treated cells have greater RhoA activity which, via myosin activation, led to an increase in the magnitude of total traction force applied to the substrate. These chemical and physical alterations upon Gleevec treatment produce the dramatic change in morphology and migration that is observed.
Resumo:
Most aerial parts of the plants are covered by a hydrophobic coating called cuticle. The cuticle is formed of cutin, a complex mixture of esterified fatty acids that are embedded and associated with waxes. The cuticle often appears as a superposition of layers of different composition: The cuticle proper formed of cutin and a mixture of waxes and underneath, the cuticle layer containing cutin, intracuticular waxes and polysaccharides of the cell wall. In addition to its involvement in plant development by preventing organ fusions, the cuticle acts as a barrier to prevent water loss and protect plants against environmental aggressions such as excessive radiation or pathogens attacks. PEC1/AtABCG32 is an ABC transporter from the PDR family involved in cutin biosynthesis. Characterization of the peci mutant in Arabidopsis thaliana showed that PEC1 plays a significant role in the diffusion barrier formation in leaves and petals. The cuticles of leaves and flowers of peci are permeable and the cuticular layer rather than the cuticular proper was altered in the petals, underlining the importance of this particular layer in the maintenance of the diffusion barrier. Chemical analysis on the flower cutin monomer composition of ped mutant revealed a decrease in hydroxylated cutin monomers, suggesting a function of PEC1 in the incorporation of these monomers in the polymer cutin. However, the exact nature of the substrates of PEC1 remained elusive. PEC1 homologues in barley and rice, respectively HvABCG31/EIBI1 and OsABCG31, are also implicated in cuticle biosynthesis. Interestingly, the rice mutant displays more severe phenotypes such as dwarfism and spreading necrosis conducting to the seedling death. In this work, we further characterized osabcg31 mutant and hairpin-RNAi downregulated OsABCG31 plant lines showing reduced growth and cuticle permeability. Our analysis showed a decrease in hydroxylated cutin monomers and severe disruptions in the cuticle, which explain the permeability. Further insights into the function of the cuticle in rice resistance/susceptibility to Pathogens were obtained after inoculation with Magnaporthe oryzae, the fungus responsible for the rice blast disease. Osabcg31 as well as the transgenic lines downregulating OsABCG31 showed increased resistance to the fungus. However, only later steps of infection are reduced . and no impact is obseived on the germination or penetration stages, suggesting that the cuticle disruption per se is not responsible for the resistance. We further investigated the cause of the resistance by analyzing the expression of defense related gene in osabcg31 prior to infection. We found that osabcg31 constitutively express defense related genes, which may explain the resistance, the dwarfism and the cell death. osabcg31 is thus a tool to study the connection between cuticle, plant development and defense signaling networks in rice. The transport function of PEC1 family members is still unknown. In order to link cutin biosynthesis and transport activity, we combined ped mutation with mutations in cutin synthesis related genes. Here, we show that PEC1 acts independently from GPAT4 and GPAT8 pathway and partially overlaps with GPAT6 biosynthesis pathway that leads to the production of hydroxylated C16 cutin precursor 2-Mono(10,16-dihydroxyhexadecanoylJglycerol (2-MHG). In addition, we noticed that despite a comparable cutin monomer composition, ped mutant leaves cuticle are permeable while that of gpat6 mutant are not. This finding raises the possibility of PEC1 being required for the incorporation of C16 hydroxylated monomers and their structural arrangement rather than their direct transport towards the cuticle. A careful investigation of the cuticle permeability, cutin composition and ultrastructure during leave development in Wt plants and ped mutants revealed a possible different regulation of several pathways of cutin biosynthesis and showed the importance of PEC1 function early during leave cuticle maturation. In order to elucidate the transport activity of PEC1, we successfully expressed PEC1 in Nicotiana benthamiana plant system for direct transport experiments. This system will be used to test the PEC 1-dependent transport of potential substrates such as sn-2-monoacylglycerol loaded with a hydroxylated C16 fatty acid. -- Toutes les parties aériennes des plantes sont recouvertes d'une couche hydrophobe appelée «cuticule». Cette cuticule est composée de cutine, un polymère d'acides gras estérifiés, et de cires. La cuticule apparaît souvent sous forme de couches superposées: une première couche extérieure appelée «cuticle proper» formée de cutine et d'un mélange de cires, et une deuxième couche, la «cuticle layer», formée de cutine associée à des cires intracuticulaires et des polysaccharides pariétaux. La cuticule joue le rôle de barrière prévenant contre la perte d'eau et les agressions environnementales. AtABCG32/PEC1 est un transporteur ABC de la famille des PDR impliqué dans la synthèse de la cutine. L'étude du mutant peci d'Arabidopsis thaliana a révélé une fonction de PEC1 dans la formation de la barrière de diffusion. La cuticule des feuilles et fleurs de peci est perméable. Des altérations de la «cuticle layer» ont été démontrées, soulignant son importance dans le maintien de la barrière. L'analyse de la composition de la cutine de peci a montré une réduction spécifique en monomères hydroxylés, suggérant un rôle de PEC1 dans leur incorporation dans la cuticule. Cependant, la nature exacte des substrats de PEC1 n'a pas été identifiée. PEC1 possède deux homologues chez l'orge et le riz, respectivement HvABCG31 et OsABCG31, et qui sont impliqués dans la biosynthèse de la cuticule. Chez le riz, des phénotypes plus sévères ont été observés tels que nanisme et nécroses conduisant à la mort des jeunes plants. Dans cette étude, nous avons continué la caractérisation de osabcg31 ainsi que des lignées de riz sous exprimant le gène OsABCG31 et présentant une cuticule perméable tout en ayant une meilleure croissance. Notre étude a démontré une réduction des monomères hydroxylés de cutine et une désorganisation de la structure de la cuticule, aggravée dans le mutant osabcg31. Ce résultat explique la perméabilité observée. Des mformations P|us approfondies sur l'implication de la cuticule dans la résistance aux pathogènes ont été obtenues après inoculation du mutant osabcg31 et les lignées sous- exprimant OsABCG31 avec une souche virulente de Magnaporthe Oryzae, le champignon responsable de la pyriculariose du riz. Les différentes lignées testées ont démontré une résistance au pathogène. Cependant, seules les étapes tardives de l'infection sont réduites et aucun impact n'est observé sur la germination des spores ou la pénétration du champignon, suggérant que les modifications de la cuticule ne sont pas directement à l'origine de la résistance. L'analyse de l'expression de gènes impliqués dans la résistance à Magnaporthe.oryzae a mis en évidence l'expression constitutive de ces gènes en l'absence de tout contact avec le pathogène. Ceci explique la résistance, le nanisme et la mort cellulaire observés. Ainsi, osabcg31 représente un outil efficace pour l'étude intégrée des systèmes de régulation de la défense, de développement des plantes et la cuticule. La nature des substrats transportés par PEC1/AtABCG32 reste inconnue. Dans le but d'établir une liaison entre biosynthèse de cutine et transport des précurseurs par PEC1, la mutation peci a été combinée avec des mutants impliqués dans différentes voies de biosynthèse. Cette étude a démontré une fonction indépendante de PEC1 de la voie de biosynthèse impliquant les enzymes GPAT4 et GPAT8, et une fonction partiellement indépendante de la voie impliquant GPAT6 qui mène à la production de précurseurs sn-2- monoacylglycerol chargés en acides gras en C16 (2-MHG). De plus, malgré un profil similaire en monomères de cutine, gpat6 conserve une cuticule imperméable alors que celle de PEC1 est perméable. Ceci suggère que PEC1 est nécessaire à l'incorporation des monomères en C16 et leur arrangement structurel plutôt que simplement à leur transport direct. L'étude approfondie de la perméabilité cuticulaire, de la structure ainsi que de la composition en cutine pendant le développement des feuilles de peci et la plante sauvage a révélé l'existence de différentes régulations des voies de biosynthèses des monomères et a démontré l'importance de PEC1 dans les premières étapes de la mise en place de la cuticule. Pour identifier les substrats transportés, l'expression de PEC1 chez le système hétérologue Nicotiana benthamiana a été conduite avec succès. Ce système sera utilisé pour tester le transport de substrats potentiels tels que le sn-2-monoacylglycerol chargé en acide gras en C16.
Resumo:
Metacaspases (MCAs) are cysteine peptidases expressed in plants, fungi and protozoa, with a caspase-like histidine-cysteine catalytic dyad, but differing from caspases, for example, in their substrate specificity. The role of MCAs is subject to debate: roles in cell cycle control, in cell death or even in cell survival have been suggested. In this study, using a Leishmania major MCA-deficient strain, we showed that L. major MCA (LmjMCA) not only had a role similar to caspases in cell death but also in autophagy and this through different domains. Upon cell death induction by miltefosine or H2O2, LmjMCA is processed, releasing the catalytic domain, which activated substrates via its catalytic dyad His/Cys and a proline-rich C-terminal domain. The C-terminal domain interacted with proteins, notably proteins involved in stress regulation, such as the MAP kinase LmaMPK7 or programmed cell death like the calpain-like cysteine peptidase. We also showed a new role of LmjMCA in autophagy, acting on or upstream of ATG8, involving Lmjmca gene overexpression and interaction of the C-terminal domain of LmjMCA with itself and other proteins. These results allowed us to propose two models, showing the role of LmjMCA in the cell death and also in the autophagy pathway, implicating different protein domains.
Resumo:
The mammalian target of rapamycin complex 1 (mTORC1) is a highly conserved protein complex regulating key pathways in cell growth. Hyperactivation of mTORC1 is implicated in numerous cancers, thus making it a potential broad-spectrum chemotherapeutic target. Here, we characterized how mTORC1 responds to cell death induced by various anticancer drugs such rapamycin, etoposide, cisplatin, curcumin, staurosporine and Fas ligand. All treatments induced cleavage in the mTORC1 component, raptor, resulting in decreased raptor-mTOR interaction and subsequent inhibition of the mTORC1-mediated phosphorylation of downstream substrates (S6K and 4E-BP1). The cleavage was primarily mediated by caspase-6 and occurred at two sites. Mutagenesis at one of these sites, conferred resistance to cell death, indicating that raptor cleavage is important in chemotherapeutic apoptosis.
Resumo:
Several methodologies for the generation of oxyallyl cations from polybromoketones and other substrates are discussed. The mechanistic aspect of the [3+4] cycloaddition reaction between these cations and dienes leading to the formation of seven membered ring carbocyclic compounds is presented. Finally, some synthetic applications of the [3+4] cycloaddition are shown.
Resumo:
The hydroformylation reaction represents one of the most important C1-chemistry area in the chemical industry. This catalytic process, which has been developed up to now mainly to the production of commodities chemicals, has shown a remarkable potential for the preparation of several categories of specialty chemicals and in particular pharmaceutical compounds. Arylpropanoic acids, various amines containing aryl groups, and intermediates for the preparation of vitamins, carbocyclic and heterocyclic compounds and many other classes of organic molecules endowed with pharmacological activity are currently accessible in good-to-high yields through hydroformylation of selected olefinic substrates. The asymmetric hydroformylation is going to reach the stage of maturity and hence to contribute in solving many troublesome synthetic problems connected with the preparation of pharmacologically active compounds with very high enantiomeric purity. The present survey emphasizes the usefulness of synthesis gas as a starting material in fine chemistry, which is expected to be important for industry.
Resumo:
A model for the construction of a simple and cheap apparatus to be used as bioreactor for reactions catalyzed by baker's yeast (Saccharomyces cerevisiae) is described. The bioconversion and separation of cells from products and residual substrates are obtained at the same time. The reactions carried out in this type of reactor are faster than those catalyzed by immobilized cells. Yeast cells can be cultivated in this bioreactor operating with cell recycling at appropriated conditions using glucose and other nutrients.