998 resultados para Chromium(III)
Resumo:
Ocean Drilling Program (ODP) Hole 735B, located on Atlantis Bank on the Southwest Indian Ridge, penetrated 1508 meters below seafloor with an average recovery of 87%, providing a nearly continuous sample of a significant part of oceanic Layer 3. Based on variations in texture and mineralogy, 12 major lithologic units are recognized in the section, ranging from 39.5 to 354 m thick. The principal lithologies include troctolite, troctolitic gabbro, olivine gabbro and microgabbro, gabbro, gabbronorite and Fe-Ti oxide gabbro, gabbronorite, and microgabbro. Highly deformed mylonites, cataclasites, and amphibole gneisses are locally present, as are small quantities of pyroxenite, anorthositic gabbro, and trondhjemite. Downhole variations in mineral composition, particularly for olivine and clinopyroxene, show a number of cyclic variations. Plagioclase compositions show the widest variations and correspond to different degrees of deformation and alteration as well as primary processes. Downhole chemical variations correspond reasonably well with variations in mineral compositions. Iron and titanium mainly reflect the presence of Fe-Ti oxide gabbros but show some cyclical variations in the lower part of the core where oxide gabbros are sparse. CaO is highly variable but shows a small but consistent increase downhole. MgO is more uniform than CaO and shows a very small downward increase. Sulfur and CO2 contents are generally low, but S shows significant enrichment in lithologic Unit IV, which consists of Fe-Ti oxide gabbro, reflecting the presence of sulfide minerals in the sequence. The lithologic, mineralogical, and geochemical data provided here will allow detailed comparisons with ophiolite sections as well as sections of in situ ocean crust drilled in the future.
Resumo:
Major and trace element profiles of clinopyroxene grains in oceanic gabbros from ODP Hole 735B have been investigated by a combined in situ analytical study with ion probe, and electron microprobe. In contrast to the homogeneous major element compositions, trace elements (REE, Y, Cr, Sr, and Zr) show continuous core to rim zoning profiles. The observed trace element systematics in clinopyroxene cannot be explained by a simple diffusive exchange between melts and gabbros along grain boundaries. A simultaneous modification of the melt composition is required to generate the zoning, although Rayleigh fractional crystallization modelling could mimic the general shape of the profiles. Simultaneous metasomatism between the cumulate crystal and the porous melt during crystal accumulation is the most likely process to explain the zoning. Deformation during solidification of the crystal mush could have caused squeezing out of the incompatible element enriched residual melts (interstitial liquid). Migration of the melt along grain boundaries might carry these melt out of the system. This process named as synkinematic differentiation or differentiation by deformation (Natland and Dick, 2001, doi:10.1016/S0377-0273(01)00211-6) may act as an important magma evolution mechanism in the oceanic crust, at least at slow-spreading ridges.
Resumo:
Three Leg 84 sites provided a good record of explosive volcanism onshore (in Central America). Ash layers and many ashy pods are interbedded in Recent to Oligocene strata. Evidence of the main periods of activity was noted in Recent to upper Pleistocene, Pliocene-Pleistocene, lower Pliocene to upper Miocene, lower Miocene, and upper Oligocene. Noticeable traces of older volcanism were found in upper Eocene strata. The chemical analyses of glass shards show a dacitic to rhyolitic composition with a low to moderate calc-alkalinity. A preliminary distinction of samples in three geochemical groups according to their K2O/SiO2 contents is done to test a magmatic evolution. Comparisons are made with Leg 67 and on-land data.
Resumo:
A total of 1.7 g of unmelted meteorite particles have been recovered from FS Polarstern piston cores collected on expedition ANT XII/4 that contain ejecta from the Eltanin impact event. Most of the mass (1.2 g) is a large, single specimen that is a polymict breccia, similar in mineralogy and chemistry to howardites or the silicate fraction of mesosiderites. Most of the remaining mass is in several large individual pieces (20-75mg each) that are polymict breccias, fragments dominated by pyroxene, and an igneous rock fragment. The latter has highly fractionated REE, similar to those reported in mafic clasts from mesosiderites. Other types of specimens identified include fragments dominated by maskelynite or olivine. These pieces of the projectile probably survived impact by being blown off the back surface of the Eltanin asteroid during its impact into the Bellingshausen Sea.
Resumo:
Major element composition ranges of closely associated basalt glass-whole rock pairs from individual small cooling units approach the total known range of basalt glass and whole rock compositions at IPOD sites 417 and 418. The whole rock samples fall into two groups: one is depleted in MgO and distinctly enriched in plagioclase but has lost some olivine and/or pyroxene relative to its corresponding glass; and the other is enriched in MgO and in phenocrysts of olivine and pyroxene as well as plagioclase compared to its corresponding glass. By analogy with observed phenocryst distributions in lava pillows, tubes, and dikes, and with some theoretical studies, we infer that bulk rock compositions are strongly affected by phenocryst redistribution due to gravity settling, flotation, and dynamic sorting after eruption, although specific models are not well constrained by the one-dimensional geometry of drill core. Compositional trends or groupings in whole rock data resulting from such late-stage processes should not be confused with more fundamental compositional effects produced in deep chambers or during partial melting.