962 resultados para Cfd


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural air ventilation is the most import passive strategy to provide thermal comfort in hot and humid climates and a significant low energy strategy. However, the natural ventilated building requires more attention with the architectural design than a conventional building with air conditioning systems, and the results are less reliable. Therefore, this thesis focuses on softwares and methods to predict the natural ventilation performance from the point of view of the architect, with limited resource and knowledge of fluid mechanics. A typical prefabricated building was modelled due to its simplified geometry, low cost and occurrence at the local campus. Firstly, the study emphasized the use of computational fluid dynamics (CFD) software, to simulate the air flow outside and inside the building. A series of approaches were developed to make the simulations possible, compromising the results fidelity. Secondly, the results of CFD simulations were used as the input of an energy tool, to simulate the thermal performance under different rates of air renew. Thirdly, the results of temperature were assessed in terms of thermal comfort. Complementary simulations were carried out to detail the analyses. The results show the potentialities of these tools. However the discussions concerning the simplifications of the approaches, the limitations of the tools and the level of knowledge of the average architect are the major contribution of this study

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy crisis is one of the major problems facing the progress of human society. There are several energy-efficient technologies that can be applied to save energy and make a sustainable environment. Passive air cooling of earth pipe cooling technology is one of them to reduce the energy consumption for hot and humid subtropical climates. The technology works with a long buried pipe with one end for intake air and the other end for providing air cooled by soil to the desired space such as residential, agricultural, or industrial buildings. It can be an attractive economical alternative to conventional cooling since there are no compressors or any customary mechanical unit. This chapter reports the performance of a vertical earth pipe cooling system for a hot and humid subtropical climatic zone in Queensland, Australia. A series of buried pipes were installed in vertical arrangement in order to increase earth pipe cooling performance. To measure the performance of the system, a numerical model was developed and simulated using the CFD software Fluent in ANSYS 15.0. Data were collected from two modeled rooms built from two shipping containers and installed at the Sustainable Precinct at Central Queensland University, Rockhampton, Australia. The impact of air temperature and velocity on room cooling performance has also been assessed. A temperature reduction of 1.82 °C was observed in the room connected to the vertical earth pipe cooling system, which will save the energy cost for thermal cooling in buildings.