982 resultados para Cephalopoda, Fossil.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a simple sieving methodology to aid the recovery of large cultigen pollen grains, such as maize (Zea mays L.), manioc (Manihot esculenta Crantz), and sweet potato (Ipomoea batatas L.), among others, for the detection of food production using fossil pollen analysis of lake sediments in the tropical Americas. The new methodology was tested on three large study lakes located next to known and/or excavated pre-Columbian archaeological sites in South and Central America. Five paired samples, one treated by sieving, the other prepared using standard methodology, were compared for each of the three sites. Using the new methodology, chemically digested sediment samples were passed through a 53 µm sieve, and the residue was retained, mounted in silicone oil, and counted for large cultigen pollen grains. The filtrate was mounted and analysed for pollen according to standard palynological procedures. Zea mays (L.) was recovered from the sediments of all three study lakes using the sieving technique, where no cultigen pollen had been previously recorded using the standard methodology. Confidence intervals demonstrate there is no significant difference in pollen assemblages between the sieved versus unsieved samples. Equal numbers of exotic Lycopodium spores added to both the filtrate and residue of the sieved samples allow for direct comparison of cultigen pollen abundance with the standard terrestrial pollen count. Our technique enables the isolation and rapid scanning for maize and other cultigen pollen in lake sediments, which, in conjunction with charcoal and pollen records, is key to determining land-use patterns and the environmental impact of pre-Columbian societies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explored the potential for using Pediastrum (Meyen), a genus of green alga commonly found in palaeoecological studies, as a proxy for lake-level change in tropical South America. The study site, Laguna La Gaiba (LLG) (17°45′S, 57°40′W), is a broad, shallow lake located along the course of the Paraguay River in the Pantanal, a 135,000-km2 tropical wetland located mostly in western Brazil, but extending into eastern Bolivia. Fourteen surface sediment samples were taken from LLG across a range of lake depths (2-5.2 m) and analyzed for Pediastrum. We found seven species, of which P. musteri (Tell et Mataloni), P. argentiniense (Bourr. et Tell), and P. cf. angulosum (Ehrenb.) ex Menegh. were identified as potential indicators of lake level. Results of the modern dataset were applied to 31 fossil Pediastrum assemblages spanning the early Holocene (12.0 kyr BP) to present to infer past lake level changes qualitatively. Early Holocene (12.0-9.8 kyr BP) assemblages do not show a clear signal, though abundance of P. simplex (Meyen) suggests relatively high lake levels. Absence of P. musteri, characteristic of deep, open water, and abundance of macrophyte-associated taxa indicate lake levels were lowest from 9.8 to 3.0 kyr BP. A shift to wetter conditions began at 4.4 kyr BP, indicated by the appearance of P. musteri, though inferred lake levels did not reach modern values until 1.4 kyr BP. The Pediastrum-inferred mid-Holocene lowstand is consistent with lower precipitation, previously inferred using pollen from this site, and is also in agreement with evidence for widespread drought in the South American tropics during the middle Holocene. An inference for steadily increasing lake level from 4.4 kyr BP to present is consistent with diatom-inferred water level rise at Lake Titicaca, and demonstrates coherence with the broad pattern of increasing monsoon strength from the late Holocene until present in tropical South America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this review paper, the aim is to compare and contrast fossil pollen evidence for Holocene rainforest ecotonal dynamics at opposite ends of the Amazon basin – the southern ecotone in NE lowland Bolivia versus the northern ecotone in lowland Colombia. During the Holocene, tropical South America experienced major changes in precipitation (Silva Dias et al. 2009). Consideration of Amazonian rainforest dynamics over this time-frame may therefore provide important insights into rainforest responsiveness to climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a well-dated, high-resolution, ~ 45 kyr lake sediment record reflecting regional temperature and precipitation change in the continental interior of the Southern Hemisphere (SH) tropics of South America. The study site is Laguna La Gaiba (LLG), a large lake (95 km2) hydrologically-linked to the Pantanal, an immense, seasonally-flooded basin and the world's largest tropical wetland (135,000 km2). Lake-level changes at LLG are therefore reflective of regional precipitation. We infer past fluctuations in precipitation at this site through changes in: i) pollen-inferred extent of flood-tolerant forest; ii) relative abundance of terra firme humid tropical forest versus seasonally-dry tropical forest pollen types; and iii) proportions of deep- versus shallow-water diatoms. A probabilistic model, based on plant family and genus climatic optima, was used to generate quantitative estimates of past temperature from the fossil pollen data. Our temperature reconstruction demonstrates rising temperature (by 4 °C) at 19.5 kyr BP, synchronous with the onset of deglacial warming in the central Andes, strengthening the evidence that climatic warming in the SH tropics preceded deglacial warming in the Northern Hemisphere (NH) by at least 5 kyr. We provide unequivocal evidence that the climate at LLG was markedly drier during the last glacial period (45.0–12.2 kyr BP) than during the Holocene, contrasting with SH tropical Andean and Atlantic records that demonstrate a strengthening of the South American summer monsoon during the global Last Glacial Maximum (~ 21 kyr BP), in tune with the ~ 20 kyr precession orbital cycle. Holocene climate conditions occurred as early as 12.8–12.2 kyr BP, when increased precipitation in the Pantanal catchment caused heightened flooding and rising lake levels in LLG. In contrast to this strong geographic variation in LGM precipitation across the continent, expansion of tropical dry forest between 10 and 3 kyr BP at LLG strengthens the body of evidence for widespread early–mid Holocene drought across tropical South America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An ongoing controversy in Amazonian palaeoecology is the manner in which Amazonian rainforest communities have responded to environmental change over the last glacial–interglacial cycle. Much of this controversy results from an inability to identify the floristic heterogeneity exhibited by rainforest communities within fossil pollen records. We apply multivariate (Principal Components Analysis) and classification (Unweighted Pair Group with Arithmetic Mean Agglomerative Classification) techniques to floral-biometric, modern pollen trap and lake sediment pollen data situated within different rainforest communities in the tropical lowlands of Amazonian Bolivia. Modern pollen rain analyses from artificial pollen traps show that evergreen terra firme (well-drained), evergreen terra firme liana, evergreen seasonally inundated, and evergreen riparian rainforests may be readily differentiated, floristically and palynologically. Analogue matching techniques, based on Euclidean distance measures, are employed to compare these pollen signatures with surface sediment pollen assemblages from five lakes: Laguna Bella Vista, Laguna Chaplin, and Laguna Huachi situated within the Madeira-Tapajós moist forest ecoregion, and Laguna Isirere and Laguna Loma Suarez, which are situated within forest patches in the Beni savanna ecoregion. The same numerical techniques are used to compare rainforest pollen trap signatures with the fossil pollen record of Laguna Chaplin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used fossil pollen to investigate the response of the eastern Chiquitano seasonally-dry tropical forest (SDTF), lowland Bolivia, to high-amplitude climate change associated with glacial–interglacial cycles. Changes in the structure, composition and diversity of the past vegetation are compared with palaeoclimate data previously reconstructed from the same record, and these results shed light on the biogeographic history of today’s highly disjunct blocks of SDTF across South America. We demonstrate that lower glacial temperatures limited tropical forest in the Chiquitanía region, and suggest that SDTF was absent or restricted at latitudes below 17°S, the proposed location of the majority of the hypothesized ‘Pleistocene dry forest arc’ (PDFA). At 19500 yrs b.p., warming supported the establishment of a floristically-distinct SDTF, which showed little change throughout the glacial–Holocene transition, despite a shift to significantly wetter conditions beginning ca. 12500–12200 yrs b.p. Anadenanthera colubrina, a key SDTF taxon, arrived at 10000 yrs b.p., which coincides with the onset of drought associated with an extended dry season. Lasting until 3000 yrs b.p., Holocene drought caused a floristic shift to more drought-tolerant taxa and a reduction in α-diversity (shown by declining palynological richness), but closed-canopy forest was maintained throughout. In contrast to the PDFA, the modern distribution of SDTF most likely represents the greatest spatial coverage of these forests in southern South America since glacial times. We find that temperature is a key climatic control upon the distribution of lowland South American SDTF over glacial-interglacial timescales, and seasonality of rainfall exerts a strong control on their floristic composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative estimates of temperature and precipitation change during the late Pleistocene and Holocene have been difficult to obtain for much of the lowland Neotropics. Using two published lacustrine pollen records and a climate-vegetation model based on the modern abundance distributions of 154 Neotropical plant families, we demonstrate how family-level counts of fossil pollen can be used to quantitatively reconstruct tropical paleoclimate and provide needed information on historic patterns of climatic change. With this family-level analysis, we show that one area of the lowland tropics, northeastern Bolivia, experienced cooling (1–3 °C) and drying (400 mm/yr), relative to present, during the late Pleistocene (50,000–12,000 calendar years before present [cal. yr B.P.]). Immediately prior to the Last Glacial Maximum (LGM, ca. 21,000 cal. yr B.P.), we observe a distinct transition from cooler temperatures and variable precipitation to a period of warmer temperatures and relative dryness that extends to the middle Holocene (5000–3000 cal. yr B.P.). This prolonged reduction in precipitation occurs against the backdrop of increasing atmospheric CO2 concentrations, indicating that the presence of mixed savanna and dry-forest communities in northeastern Bolivia durng the LGM was not solely the result of low CO2 levels, as suggested previously, but also lower precipitation. The results of our analysis demonstrate the potential for using the distribution and abundance structure of modern Neotropical plant families to infer paleoclimate from the fossil pollen record.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Moraceae family is one of the most abundant and ecologically important families in Neotropical rainforests and is very well-represented in Amazonian fossil pollen records. However, difficulty in differentiating palynologically between the genera within this family, or between the Moraceae and Urticaceae families, has limited the amount of palaeoecological information that can be extracted from these records. The aim of this paper is to analyse the morphological properties of pollen from Amazonian species of Moraceae in order to determine whether the pollen taxonomy of this family can be improved. Descriptive and morphometric methods are used to identify and differentiate key pollen types of the Moraceae (mulberry) and Urticaceae (nettle) families which are represented in Amazonian rainforest communities of Noel Kempff Mercado National Park (NKMNP), Northeast Bolivia. We demonstrate that Helicostylis, Brosimum, Pseudolmedia, Sorocea and Pourouma pollen can be identified in tropical pollen assemblages and present digital images of, and a taxonomic key to, the Moraceae pollen types of NKMNP. Indicator species, Maquira coriacea (riparian evergreen forest) and Brosimum gaudichaudii (open woodland and upland savanna communities), also exhibit unique pollen morphologies. The ability to recognise these ecologically important taxa in pollen records provides the potential for much more detailed and reliable Neotropical palaeovegetation reconstructions than have hitherto been possible. In particular, this improved taxonomic resolution holds promise for resolving long-standing controversies over the interpretation of key Amazonian Quaternary pollen records.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1938, Guy Stewart Callendar was the first to demonstrate that the Earth’s land surface was warming. Callendar also suggested that the production of carbon dioxide by the combustion of fossil fuels was responsible for much of this modern change in climate. This short note marks the 75th anniversary of Callendar’s landmark study and demonstrates that his global land temperature estimates agree remarkably well with more recent analyses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extent to which past climate change has dictated the pattern and timing of the out-of-Africa expansion by anatomically modern humans is currently unclear [Stewart JR, Stringer CB (2012) Science 335:1317–1321]. In particular, the incompleteness of the fossil record makes it difficult to quantify the effect of climate. Here, we take a different approach to this problem; rather than relying on the appearance of fossils or archaeological evidence to determine arrival times in different parts of the world, we use patterns of genetic variation in modern human populations to determine the plausibility of past demographic parameters. We develop a spatially explicit model of the expansion of anatomically modern humans and use climate reconstructions over the past 120 ky based on the Hadley Centre global climate model HadCM3 to quantify the possible effects of climate on human demography. The combinations of demographic parameters compatible with the current genetic makeup of worldwide populations indicate a clear effect of climate on past population densities. Our estimates of this effect, based on population genetics, capture the observed relationship between current climate and population density in modern hunter–gatherers worldwide, providing supporting evidence for the realism of our approach. Furthermore, although we did not use any archaeological and anthropological data to inform the model, the arrival times in different continents predicted by our model are also broadly consistent with the fossil and archaeological records. Our framework provides the most accurate spatiotemporal reconstruction of human demographic history available at present and will allow for a greater integration of genetic and archaeological evidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in “normal” and “hosing” experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The “hosing” experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the “normal” experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim  Species distribution models (SDMs) based on current species ranges underestimate the potential distribution when projected in time and/or space. A multi-temporal model calibration approach has been suggested as an alternative, and we evaluate this using 13,000 years of data. Location  Europe. Methods  We used fossil-based records of presence for Picea abies, Abies alba and Fagus sylvatica and six climatic variables for the period 13,000 to 1000 yr bp. To measure the contribution of each 1000-year time step to the total niche of each species (the niche measured by pooling all the data), we employed a principal components analysis (PCA) calibrated with data over the entire range of possible climates. Then we projected both the total niche and the partial niches from single time frames into the PCA space, and tested if the partial niches were more similar to the total niche than random. Using an ensemble forecasting approach, we calibrated SDMs for each time frame and for the pooled database. We projected each model to current climate and evaluated the results against current pollen data. We also projected all models into the future. Results  Niche similarity between the partial and the total-SDMs was almost always statistically significant and increased through time. SDMs calibrated from single time frames gave different results when projected to current climate, providing evidence of a change in the species realized niches through time. Moreover, they predicted limited climate suitability when compared with the total-SDMs. The same results were obtained when projected to future climates. Main conclusions  The realized climatic niche of species differed for current and future climates when SDMs were calibrated considering different past climates. Building the niche as an ensemble through time represents a way forward to a better understanding of a species' range and its ecology in a changing climate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cities and global climate change are closely linked: cities are where the bulk of greenhouse gas emissions take place through the consumption of fossil fuels; they are where an increasing proportion of the world’s people live; and they also generate their own climate – commonly characterized by the urban heat island. In this way, understanding the way cities affect the cycling of energy, water, and carbon to create an urban climate is a key element of climate mitigation and adaptation strategies, especially in the context of rising global temperatures and deteriorating air quality in many cities. As climate models resolve finer spatial-scales, they will need to represent those areas in which more than 50% of the world’s population already live to provide climate projections that are of greater use to planning and decision-making. Finally, many of the processes that are instrumental in determining urban climate are the same factors leading to global anthropogenic climate change, namely regional-scale land-use changes; increased energy use; and increased emissions of climatically-relevant atmospheric constituents. Cities are therefore both a case study for understanding, and an agent in mitigating, anthropogenic climate change. This chapter reviews and summarizes the current state of understanding of the physical basis of urban climates, as well as our ability to represent these in models. We argue that addressing the challenges of managing urban environments in a changing climate requires understanding the energy, water, and carbon balances for an urban landscape and, importantly, their interactions and feedbacks, together with their links to human behaviour and controls. We conclude with some suggestions for where further research is needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Black carbon aerosol plays a unique and important role in Earth’s climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr�-1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m�-2 with 90% uncertainty bounds of (+0.08, +1.27)Wm�-2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m�-2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m�-2 with 90% uncertainty bounds of +0.17 to +2.1 W m�-2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m�-2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (�-0.50 to +1.08) W m-�2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (�-0.06 W m�-2 with 90% uncertainty bounds of �-1.45 to +1.29 W m�-2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.