1000 resultados para Cement panel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this thesis was the study of the cement-bone interface in the tibial component of a cemented total knee prosthesis. One of the things you can see in specimens after in vivo service is that resorption of bone occurs in the interdigitated region between bone and cement. A stress shielding effect was investigated as a cause to explain bone resorption. Stress shielding occurs when bone is loaded less than physiological and therefore it starts remodeling according to the new loading conditions. µCT images were used to obtain 3D models of the bone and cement structure and a Finite Element Analysis was used to simulate different kind of loads. Resorption was also simulated by performing erosion operations in the interdigitated bone region. Finally, 4 models were simulated: bone (trabecular), bone with cement, and two models of bone with cement after progressive erosions of the bone. Compression, tension and shear test were simulated for each model in displacement-control until 2% of strain. The results show how the principal strain and Von Mises stress decrease after adding the cement on the structure and after the erosion operations. These results show that a stress shielding effect does occur and rises after resorption starts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work is to find a methodology in order to make possible the recycling of fines (0 - 4 mm) in the Construction and Demolition Waste (CDW) process. At the moment this fraction is a not desired by-product: it has high contaminant content, it has to be separated from the coarse fraction, because of its high water absorption which can affect the properties of the concrete. In fact, in some countries the use of fines recycled aggregates is highly restricted or even banned. This work is placed inside the European project C2CA (from Concrete to Cement and Clean Aggregates) and it has been held in the Faculty of Civil Engineering and Geosciences of the Technical University of Delft, in particular, in the laboratory of Resources And Recycling. This research proposes some procedures in order to close the loop of the entire recycling process. After the classification done by ADR (Advanced Dry Recovery) the two fractions "airknife" and "rotor" (that together constitute the fraction 0 - 4 mm) are inserted in a new machine that works at high temperatures. The temperatures analysed in this research are 600 °C and 750 °C, cause at that temperature it is supposed that the cement bounds become very weak. The final goal is "to clean" the coarse fraction (0,250 - 4 mm) from the cement still attached to the sand and try to concentrate the cement paste in the fraction 0 - 0,250 mm. This new set-up is able to dry the material in very few seconds, divide it into two fractions (the coarse one and the fine one) thanks to the air and increase the amount of fines (0 - 0,250 mm) promoting the attrition between the particles through a vibration device. The coarse fraction is then processed in a ball mill in order to improve the result and reach the final goal. Thanks to the high temperature it is possible to markedly reduce the milling time. The sand 0 - 2 mm, after being heated and milled is used to replace 100% of norm sand in mortar production. The results are very promising: the mortar made with recycled sand reaches an early strength, in fact the increment with respect to the mortar made with norm sand is 20% after three days and 7% after seven days. With this research it has been demonstrated that once the temperature is increased it is possible to obtain a clean coarse fraction (0,250 - 4 mm), free from cement paste that is concentrated in the fine fraction 0 - 0,250 mm. The milling time and the drying time can be largely reduced. The recycled sand shows better performance in terms of mechanical properties with respect to the natural one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the outlook of improving seismic vulnerability assessment for the city of Bishkek (Kyrgyzstan), the global dynamic behaviour of four nine-storey r.c. large-panel buildings in elastic regime is studied. The four buildings were built during the Soviet era within a serial production system. Since they all belong to the same series, they have very similar geometries both in plan and in height. Firstly, ambient vibration measurements are performed in the four buildings. The data analysis composed of discrete Fourier transform, modal analysis (frequency domain decomposition) and deconvolution interferometry, yields the modal characteristics and an estimate of the linear impulse response function for the structures of the four buildings. Then, finite element models are set up for all four buildings and the results of the numerical modal analysis are compared with the experimental ones. The numerical models are finally calibrated considering the first three global modes and their results match the experimental ones with an error of less then 20%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Navigation through a previously deployed and deformed stent is a difficult interventional task. Inadvertent navigation through the struts of a stent can potentially lead to incomplete secondary stent extension and vessel occlusion. Better visualisation of the pathway through the stent can reduce the risks of the procedural complications and reduce the reluctance of the interventionalist to navigate through a previously deployed stent. We describe a technique of visualisation of the pathway navigated by a guidewire through a previously deployed deformed and fractured carotid stent by the use of DynaCT. Three-dimensional reconstruction of the stent/microwire allows excellent visualisation of the correct pathway of the microwire within the stent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The management of insufficiency fractures of the tibial plateau in osteoporotic patients can be very challenging, since it is difficult to achieve a stable fixation, an essential condition for the patients' early mobilization. We present a minimally invasive technique for the treatment of proximal tibial plateau fractures, "tibiaplasty", using percutaneous polymethylmethacrylate augmentation. Five osteoporotic patients (7 fractures) with a non-traumatic insufficiency tibial plateau fracture were treated with this technique at the authors' institution from 2006 to 2008. The patients' median age was 79 (range 62-88) years. The intervention was performed percutaneously under general or spinal anesthesia; after the intervention, immediate full weight bearing was allowed. The technique was feasible in all patients and no complications related to the intervention were observed. All patients reported a relevant reduction in pain, were able to mobilize with full weight bearing and would undergo the operation again. No secondary loss of reduction or progression of arthrosis was observed in radiological controls; no revision surgery was required. Our initial results indicate that tibiaplasty is a good treatment option for the management of insufficiency in tibial plateau fractures in osteoporotic patients. The technique is minimally invasive, safe and allows immediate mobilization without restrictions. In our group of patients, we found excellent early to mid-term results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertebroplasty is a minimally invasive procedure with many benefits; however, the procedure is not without risks and potential complications, of which leakage of the cement out of the vertebral body and into the surrounding tissues is one of the most serious. Cement can leak into the spinal canal, venous system, soft tissues, lungs and intradiscal space, causing serious neurological complications, tissue necrosis or pulmonary embolism. We present a method for automatic segmentation and tracking of bone cement during vertebroplasty procedures, as a first step towards developing a warning system to avoid cement leakage outside the vertebral body. We show that by using active contours based on level sets the shape of the injected cement can be accurately detected. The model has been improved for segmentation as proposed in our previous work by including a term that restricts the level set function to the vertebral body. The method has been applied to a set of real intra-operative X-ray images and the results show that the algorithm can successfully detect different shapes with blurred and not well-defined boundaries, where the classical active contours segmentation is not applicable. The method has been positively evaluated by physicians.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CBV is a vital perfusion parameter in estimating the viability of brain parenchyma (eg, in cases of ischemic stroke or after interventional vessel occlusion). Recent technologic advances allow parenchymal CBV imaging tableside in the angiography suite just before, during, or after an interventional procedure. The aim of this work was to analyze our preliminary clinical experience with this new imaging tool in different neurovascular interventions.