1000 resultados para Celebes Sea
Resumo:
Integrating connectivity patterns into marine ecosystem management is a fundamental step, specially for stock subjected to the combined impacts of human activities (overfishing, habitat degradation, etc.) and climate changes. Thus, management of marine resources must incorporates the spatial scales over which the populations are connected. Notwithstanding, studying these dynamics remains a crucial and hard task and the predictions of the temporal and spatial patterns of these mechanisms are still particularly challenging. This thesis aims to puzzle over the red mullet Mullus barbatus population connectivity in the Western Mediterranean Sea, by implementing a multidisciplinary approach. Otolith sclerochronology, larval dispersal modelling and genetic techniques were gathered in this study. More particularly, this research project focused on early life history stages of red mullet and their role in the characterization of connectivity dynamics. The results show that M. barbatus larval dispersal distances can reach a range of 200 km. The differences in early life traits (i.e. PLD, spawning and settlement dates) observed between various areas of the Western Mediterranean Sea suggest a certain level of larval patchiness, likely due to the occurrence of different spawning pulses during the reproductive period. The dispersal of individuals across distant areas, even not significant in demographic terms, is accountable for the maintenance of the genetic flow among different demes. Fluctuations in the level of exchange among different areas, due to the variability of the source-sink dynamics, could have major implications in the population connectivity patterns. These findings highlight the reliability of combining several approaches and represent a benchmark for the definition of a proper resource management, with considerable engagements in effectively assuring the beneficial effects of the existent and future conservation strategies.
Resumo:
http://www.archive.org/details/atseandinportorl00hineiala
Resumo:
This study was undertaken to investigate the general biology, including the reproductive cycle and health status, of two clam taxa in Irish waters, with particular reference to the Irish Sea area. Monthly samples of the soft shell clam, Mya arenaria, were collected from Bannow Bay, Co. Wexford, Ireland, for sixteen months, and of the razor clam, Ensis spp. from the Skerries region (Irish Sea) between June 2010 and September 2011. In 2010, M. arenaria in Bannow Bay matured over the summer months, with both sexes either ripe or spawning by August. The gonads of both sexes of E. siliqua developed over autumn and winter 2010, with the first spawning individuals being recorded in January 2011. Two unusually cold winters, followed by a warmer than average spring, appear to have affected M. arenaria and E. siliqua gametogenesis at these sites. It was noted that wet weight of E. siliqua dropped significantly in the summer of both 2010 and 2011, after spawning, which may impact on the economic viability of fishing during this period. Additional samples of M. arenaria were collected at Flaxfort (Ireland), and Ensis spp. at Oxwich (Wales), and the pathology of all clams was examined using both histological and molecular methods. No pathogenic conditions were observed in M. arenaria while Prokaryote inclusions, trematode parasites, Nematopsis spp. and inflammatory pathologies were observed at low incidences in razor clams from Ireland but not from Wales; the first time these conditions have been reported in Ensis spp. in northern European waters. Mya arenaria from sites in Europe and eastern and western North America were investigated for genetic variation using both mitochondrial (cytochrome oxidase I (COI) and 16S ribosomal RNA genes) and nuclear markers (10 microsatellite loci). Both mitochondrial CO1 and all nuclear markers showed reduced levels of variation in certain European samples, with significant differences in haplotype and allelic composition between most samples, particularly those from the two different continents, but with the same common haplotypes or alleles throughout the range. The appearance of certain unique rare haplotypes and microsatellite alleles in the European samples suggest a complicated origin involving North American colonization but also possible southern European Pleistocene refugia. Specimens of Ensis spp. were obtained from five coastal areas around Ireland and Wales and species-specific PCR primers were used to amplify the internal transcribed spacer region 1 (ITS1) and the mitochondrial DNA CO1 gene and all but 15 razor clams were identified as Ensis siliqua. Future investigations should focus on continued monitoring of reproductive biology and pathology of the two clam taxa (in particular, to assess the influence of environmental change), and on genetics of southern European M. arenaria and sequencing the CO1 gene in Ensis individuals to clarify species identity
Resumo:
The soft shell clam, Mya arenaria, and the razor clam, Ensis siliqua, are widely distributed in Irish waters. Though the reproductive biology and other aspects of the physiology of these species has been previously investigated, little or no data are currently available on their health status. As this knowledge is essential for correct management of a species, M. arenaria and E. siliqua were examined to assess their current health status using histological and molecular methods, over a period of sixteen months. No pathogens or disease were observed in M. arenaria, and low incidences of Prokaryote inclusions, trematode parasites, Nematopsis spp. and eosinophilic bodies were recorded in razor clams for the first time in Northern European waters.
Resumo:
Knowledge of the reproductive cycle of a species is a prerequisite for sustainable management of a fishery. The infaunal marine bivalve, Ensis siliqua, is a commercially important species in Europe, and is exploited in many countries, including Ireland, where it is sold by wet weight. Seasonal variations in the reproductive cycle of subtidal razor clams from the Skerries region of the Irish Sea, an important fisheries area, were examined between June 2010 and September 2011 while monitoring weight. Histological examination revealed that the E. siliqua sex-ratio was not different from parity, and no hermaphrodites were observed in the samples collected. In the summer months of 2010 all female clams were either spent or in early development, with just a small percentage of males still spawning. The gonads of both sexes developed over the autumn and winter months of 2010, with the first spawning individuals recorded in January 2011. Spawning peaked in March 2011, but unlike in 2010, spawning continued through June and July with all animals spent in August 2011. The earlier and longer spawning period found in this species in 2011 compared to 2010 may have been due to the colder than normal temperature observed during the winter of 2010 plus the relatively warmer temperatures of Spring 2011, which could have affected the gametogenic development of E. siliqua in the Irish Sea. It was noted that wet weight dropped in the summer months of both years, immediately after the spawning period which may impact on the practicality of fishing for this species during this period. Timing of development and spawning is compared with other sites in the Irish Sea and elsewhere in Europe, including the Iberian Peninsula.
Resumo:
The climatic development of the Mid to Late Quaternary (last 400,000 years) is characterised by fluctuation between glacial and interglacial periods leading to the present interglacial, the Holocene. In comparison to preceding periods it was believed the Holocene represented a time of relative climatic stability. However, recent work has shown that the Holocene can be divided into cooler periods such as the Little Ice Age alternating with time intervals where climatic conditions ameliorated i.e. Medieval Warm Period, Holocene Thermal Optimum and the present Modern Optimum. In addition, the Holocene is recognised as a period with increasing anthropogenic influence on the environment. Onshore records recording glacial/interglacial cycles as well as anthropogenic effects are limited. However, sites of sediment accumulation on the shallow continental shelf offer the potential to reconstruct these events. Such sites include tunnel valleys and low energy, depositional settings. In this study we interrogated the sediment stratigraphy at such sites in the North Sea and Irish Sea using traditional techniques, as well as novel applications of geotechnical data, to reconstruct the palaeoenvironmental record. Within the German North Sea sector a combination of core, seismic and in-situ Cone Penetration Testing (CPT) data was used to identify sedimentary units, place them within a morphological context, relate them to glacial or interglacial periods stratigraphically, and correlate them across the German North Sea. Subsequently, we were able to revise the Mid to Late Quaternary stratigraphy for the North Sea using this new and novel data. Similarly, Holocene environmental changes were investigated within the Irish Sea at a depositional site with active anthropogenic influence. The methods used included analyses on grain-size distribution, foraminifera, gamma spectrometry, AMS 14C and physical core logging. The investigation revealed a strong fluctuating climatic signal early in the areas history before anthropogenic influence affects the record through trawling.
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published
Resumo:
Endomesoderm is the common progenitor of endoderm and mesoderm early in the development of many animals. In the sea urchin embryo, the Delta/Notch pathway is necessary for the diversification of this tissue, as are two early transcription factors, Gcm and FoxA, which are expressed in mesoderm and endoderm, respectively. Here, we provide a detailed lineage analysis of the cleavages leading to endomesoderm segregation, and examine the expression patterns and the regulatory relationships of three known regulators of this cell fate dichotomy in the context of the lineages. We observed that endomesoderm segregation first occurs at hatched blastula stage. Prior to this stage, Gcm and FoxA are co-expressed in the same cells, whereas at hatching these genes are detected in two distinct cell populations. Gcm remains expressed in the most vegetal endomesoderm descendant cells, while FoxA is downregulated in those cells and activated in the above neighboring cells. Initially, Delta is expressed exclusively in the micromeres, where it is necessary for the most vegetal endomesoderm cell descendants to express Gcm and become mesoderm. Our experiments show a requirement for a continuous Delta input for more than two cleavages (or about 2.5 hours) before Gcm expression continues in those cells independently of further Delta input. Thus, this study provides new insights into the timing mechanisms and the molecular dynamics of endomesoderm segregation during sea urchin embryogenesis and into the mode of action of the Delta/Notch pathway in mediating mesoderm fate.
Resumo:
Recent evidence that echinoids of the genus Echinometra have moderate visual acuity that appears to be mediated by their spines screening off-axis light suggests that the urchin Strongylocentrotus purpuratus, with its higher spine density, may have even more acute spatial vision. We analyzed the movements of 39 specimens of S. purpuratus after they were placed in the center of a featureless tank containing a round, black target that had an angular diameter of 6.5 deg. or 10 deg. (solid angles of 0.01 sr and 0.024 sr, respectively). An average orientation vector for each urchin was determined by testing the animal four times, with the target placed successively at bearings of 0 deg., 90 deg., 180 deg. and 270 deg. (relative to magnetic east). The urchins showed no significant unimodal or axial orientation relative to any non-target feature of the environment or relative to the changing position of the 6.5 deg. target. However, the urchins were strongly axially oriented relative to the changing position of the 10 deg. target (mean axis from -1 to 179 deg.; 95% confidence interval +/- 12 deg.; P<0.001, Moore's non-parametric Hotelling's test), with 10 of the 20 urchins tested against that target choosing an average bearing within 10 deg. of either the target center or its opposite direction (two would be expected by chance). In addition, the average length of the 20 target-normalized bearings for the 10 deg. target (each the vector sum of the bearings for the four trials) were far higher than would be expected by chance (P<10(-10); Monte Carlo simulation), showing that each urchin, whether it moved towards or away from the target, did so with high consistency. These results strongly suggest that S. purpuratus detected the 10 deg. target, responding either by approaching it or fleeing it. Given that the urchins did not appear to respond to the 6.5 deg. target, it is likely that the 10 deg. target was close to the minimum detectable size for this species. Interestingly, measurements of the spine density of the regions of the test that faced horizontally predicted a similar visual resolution (8.3+/-0.5 deg. for the interambulacrum and 11+/-0.54 deg. for the ambulacrum). The function of this relatively low, but functional, acuity - on par with that of the chambered Nautilus and the horseshoe crab - is unclear but, given the bimodal response, is likely to be related to both shelter seeking and predator avoidance.
Resumo:
Shallow-water tropical reefs and the deep sea represent the two most diverse marine environments. Understanding the origin and diversification of this biodiversity is a major quest in ecology and evolution. The most prominent and well-supported explanation, articulated since the first explorations of the deep sea, holds that benthic marine fauna originated in shallow, onshore environments, and diversified into deeper waters. In contrast, evidence that groups of marine organisms originated in the deep sea is limited, and the possibility that deep-water taxa have contributed to the formation of shallow-water communities remains untested with phylogenetic methods. Here we show that stylasterid corals (Cnidaria: Hydrozoa: Stylasteridae)--the second most diverse group of hard corals--originated and diversified extensively in the deep sea, and subsequently invaded shallow waters. Our phylogenetic results show that deep-water stylasterid corals have invaded the shallow-water tropics three times, with one additional invasion of the shallow-water temperate zone. Our results also show that anti-predatory innovations arose in the deep sea, but were not involved in the shallow-water invasions. These findings are the first robust evidence that an important group of tropical shallow-water marine animals evolved from deep-water ancestors.
Resumo:
Multiproxy temperature estimation requires careful attention to biological, chemical, physical, temporal, and calibration differences of each proxy and paleothermometry method. We evaluated mid-Pliocene sea surface temperature (SST) estimates from multiple proxies at Deep Sea Drilling Project Holes 552A, 609B, 607, and 606, transecting the North Atlantic Drift. SST estimates derived from faunal assemblages, foraminifer Mg/Ca, and alkenone unsaturation indices showed strong agreement at Holes 552A, 607, and 606 once differences in calibration, depth, and seasonality were addressed. Abundant extinct species and/or an unrecognized productivity signal in the faunal assemblage at Hole 609B resulted in exaggerated faunal-based SST estimates but did not affect alkenone-derived or Mg/Ca-derived estimates. Multiproxy mid-Pliocene North Atlantic SST estimates corroborate previous studies documenting high-latitude mid-Pliocene warmth and refine previous faunal-based estimates affected by environmental factors other than temperature. Multiproxy investigations will aid SST estimation in high-latitude areas sensitive to climate change and currently underrepresented in SST reconstructions. Copyright 2008 by the American Geophysical Union.
Resumo:
My dissertation work integrates comparative transcriptomics and functional analyses to investigate gene expression changes underlying two significant aspects of sea urchin evolution and development: the dramatic developmental changes associated with an ecologically significant shift in life history strategy and the development of the unusual radial body plan of adult sea urchins.
In Chapter 2, I investigate evolutionary changes in gene expression underlying the switch from feeding (planktotrophic) to nonfeeding (lecithotrophic) development in sea urchins. In order to identify these changes, I used Illumina RNA-seq to measure expression dynamics across 7 developmental stages in three sea urchin species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph Heliocidaris tuberculata, and an outgroup planktotroph Lytechinus variegatus. My analyses draw on a well-characterized developmental gene regulatory network (GRN) in sea urchins to understand how the ancestral planktotrophic developmental program was altered during the evolution of lecithotrophic development. My results suggest that changes in gene expression profiles occurred more frequently across the transcriptome during the evolution of lecithotrophy than during the persistence of planktotrophy. These changes were even more pronounced within the GRN than across the transcriptome as a whole, and occurred in each network territory (skeletogenic, endomesoderm and ectoderm). I found evidence for both conservation and divergence of regulatory interactions in the network, as well as significant changes in the expression of genes with known roles in larval skeletogenesis, which is dramatically altered in lecithotrophs. I further explored network dynamics between species using coexpression analyses, which allowed me to identify novel players likely involved in sea urchin neurogenesis and endoderm patterning.
In Chapter 3, I investigate developmental changes in gene expression underlying radial body plan development and metamorphosis in H. erythrogramma. Using Illumina RNA-seq, I measured gene expression profiles across larval, metamorphic, and post-metamorphic life cycle phases. My results present a high-resolution view of gene expression dynamics during the complex transition from pre- to post-metamorphic development and suggest that distinct sets of regulatory and effector proteins are used during different life history phases.
Collectively, my investigations provide an important foundation for future, empirical studies to investigate the functional role of gene expression change in the evolution of developmental differences between species and also for the generation of the unusual radial body plan of sea urchins.