969 resultados para Catalyst deactivation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Azide-alkyne Huisgen click chemistry provides new synthetic routes for making thermoplastic polytriazole polymers-without solvent or catalyst. This method was used to polymerize three diester dialkyne monomers with a lipid derived 18 carbon diazide to produce a series of polymers (labelled C18C18, C18C9, and C18C4 based on monomer chain lengths) free of residual solvent and catalyst. Three diester dialkyne monomers were synthesized with ester chain lengths of 4, 9, and 18 carbons from renewable sources. Significant differences in thermal and mechanical properties were observed between C18C9 and the two other polymers. C18C9 presented a lower melting temperature, higher elongation at break, and reduced Young's modulus compared to C18C4 and C18C18. This was due to the odd-even effect induced by the number of carbon atoms in the monomers which resulted in orientation of the ester linkages of C18C9 in the same direction, thereby reducing hydrogen bonding. The thermoplastic polytriazoles presented are novel polymers derived from vegetable oil with favourable mechanical and thermal properties suitable for a large range of applications where no residual solvent or catalyst can be tolerated. Their added potential biocompatibility and biodegradability make them ideal for applications in the medical and pharmaceutical industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermogravimetric analysis is one of the most common instrumental techniques used for the characterization of pastes, mortars and concretes based on both calcium hydroxide and Portland cement. Important information about pozzolanic materials can be assessed concerning calcium hydroxide consumption and the formation of new hydrated products. Nevertheless, in some cases, problems associated with the overlapped decomposition processes for hydrates make the analysis of obtained data difficult. In this paper, the use of high-resolution thermogravimetric analysis, a powerful technique that allows separating decomposition processes in analysis of hydrated binders, was performed for spent FCC catalyst-Portland cement pastes. These pastes were monitored for 1, 4, 8 h and 1, 2, 3, 7 and 28 curing days. In order to study the influence of the pozzolanic material (spent FCC catalyst), Portland cement replacements of 5, 15 and 30 % by mass were carried out. The presence of spent FCC catalyst in blended pastes modified the amount and the nature of the formed hydrates, mainly ettringite and stratlingite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A structural study of CuO supported on a CeO2-TiO2 system was undertaken using X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) techniques. The results of XRD revealed the presence of only two phases, TiO2 anatase and CeO2 cerianite. A trend towards smaller TiO2 crystallites was observed when cerium content increased. When the amount of cerium increased, Ti K-edge XANES analysis showed an increasing distortion of Ti sites. The results of Ce LIII-edge EXAFS showed that Ce atoms are coordinated by eight oxygen atoms at 2.32 Å. For the sample containing a small amount of cerium, the EXAFS analysis indicated that the local structure around Ce atoms was highly distorted. The catalysts presented quite different Cu K-edge XANES spectra compared to the spectra of the CuO and Cu2O reference compounds. The Cu-O mean bond length was close to that of the CuO and the Cu atoms in the catalysts are surrounded by approximately four oxygen atoms in their first shell. Copper supported on the ceria-modified titania support catalysts displayed a better performance in the methanol dehydrogenation when compared to copper supported only on titania or on ceria. © 2002 Plenum Publishing Corporation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalysts containing mixtures of NiO, MgO and ZrO2 were synthesized by the polymerization method. They were characterized by X-ray diffraction (XRD), physisorption of N-2 (BET), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES), and then tested in the partial oxidation of methane (POM) in the presence of air (2CH(4):1O(2)) at 750 degrees C for 6 h. Among the ternary oxides, the catalyst with 40 mol% MgO showed the highest conversion rates in the catalytic processes, but also the highest carbon deposition values (48 mmol h (1)). The greater the amount of NiO-MgO solid solution formed, the higher was the conversion rate of reactants (CH4), peaking at 40 mol% of MgO. Catalysts with lower Ni content on the surface achieved a high rate of CH4 conversion into synthesis gas (H-2 + CO). The formation of more NiO-MgO solid solution seemed to inhibit the deactivation of Ni degrees during reaction. The values of the H-2/CO product ratio were generally found to be slightly lower than stoichiometric. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 20% Pt3Sn/C catalyst was prepared by reduction with formic acid and used in a direct ethanol fuel cell at low temperatures. The electro-catalytic activity of this bimetallic catalyst was compared to that of a commercial 20% Pt/C catalyst. The PtSn catalyst showed better results in the investigated temperature range (30 degrees-70 degrees C). Generally, Sn promotes ethanol oxidation by adsorption of OH species at considerably lower potentials compared to Pt, allowing the occurrence of a bifunctional mechanism. The bimetallic catalyst was physico-chemically characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. The presence of SnO2 in the bulk and surface of the catalyst was observed. It appears that SnO2 can enhance the ethanol electro-oxidation activity at low potentials due to the supply of oxygen-containing species for the oxidative removal of CO and CH3CO species adsorbed on adjacent Pt active sites.