968 resultados para Carbonate minerals.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Drilling Program Leg 120 recovered basement samples that consisted of zeolite-facies metabasalts at Sites 747, 749, and 750 on the Kerguelen Plateau. These basalts were metamorphosed in the low to intermediate zones of the zeolite facies, as indicated by the presence of diagnostic zeolites and the absence of chlorite, epidote, prehnite, pumpellyite, and wairakite. Chabazite, natrolite, thompsonite, mesolite, stilbite, huelandite, and smectites occur as amygduloidal fillings in basalts from Holes 747C and 750B, whereas only stilbite, laumontite, and pure and mixed-layered smectites were identified in amygduloidal basalts from Hole 749C. In the lower sections of Hole 749C, only laumontite and mixed-layered smectites coexist. Based on calculations with published experimental phase equilibria, the absence of wairakite in basalts from Hole 749C and of laumontite in basalts from Holes 747C and 750B suggests that metamorphic temperatures did not exceed approximately 225° and 120°C, respectively. The presence of well-developed zeolite mineral assemblages and the absence of carbonate and clay mineral assemblages restricts XCO2 in the fluid to approximately <=0.0075. Low- to intermediate-zone zeolite-facies mineral assemblages in basalts from the Kerguelen Plateau can be accounted for by metamorphism in an active geothermal area such as present-day Iceland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Holes 1209A and 1211A on Southern High, Shatsky Rise contain expanded, nearly continuous records of carbonate-rich sediment deposited in deep water of the equatorial Pacific Ocean during the Paleocene and Eocene. In this study, we document intervals of carbonate dissolution in these records by examining temporal changes in four parameters: carbonate content, coarse size fraction (>38 µm), benthic foraminiferal abundance, and planktonic foraminiferal fragmentation ratio. Carbonate content is not a sensitive indicator of carbonate dissolution in the studied sections, although rare intervals of low carbonate may reflect times of relatively high dissolution. The proportion of coarse size fraction does not accurately record carbonate dissolution either because the relative abundance of nannofossils largely determines the grain-size distribution. Benthic abundance and fragmentation covary (r**2 = 0.77) and are probably the best indicators for carbonate dissolution. For both holes, records of these parameters indicate two episodes of prominent dissolution. The first of these occurs in the upper Paleocene (~59-58 Ma) and the second in the middle to upper Eocene (~45-33.7 Ma). Other intervals of enhanced carbonate dissolution are located in the upper Paleocene (~56 Ma) and in the upper lower Eocene (~51 Ma). Enhanced preservation of planktonic foraminiferal assemblages marks the start of both the Paleocene and Eocene epochs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different generations of complex authigenic carbonates formed in siliceous muds (lithologic Unit IV) and hemipelagic clays (lithologic Unit V) of ODP Site 643, Leg 104 Norwegian Sea. The dominant phase in Unit IV is an early diagenetic Mn, Fe-calcite with a strong negative d13C ( -14 to -16 per mil) signature, and slightly negative d180 values. The strong negative d13C results from extensive incorporation of 12C-enriched CO2 derived from bacterial degradation of marine organic matter into early Mn, Fe - calcite cements. Concomitant framboidal pyrite precipitation and abundant SEM microtextures showing excellent preservation of delicate structures of fragile diatom valves by outpourings with early Mn-calcites strongly support their shallow burial formation before the onset of compaction. Later generations of authigenic mineralizations in lithologic Unit IV include minor amounts of a second generation of calcite with platy crystals, possibly precipitated along with opal-A dissolution, and finally opal-CT crystallization in deeper seated environments overgrowing earlier precipitates with films and lepispheres. The last mineralization is collophane (fluor apatite) forming amorphous aggregates and tiny hexagonal crystals. Authigenic mineral assemblages in lithologic Unit V consist of rhodochrosites, transitional rhodochrosite/manganosiderites, and apatite. A negative d13C ( -7.1 to -15.6 per mil) and a fluctuating d18O signal indicates that the micritic to sparitic rhodochrosites, transitional rhodochrosites/manganosiderites were formed at various burial depths. CO2 resulted from organic matter degradation in the lowermost sulfate reduction zone and from biogenic methane generation in the lowermost sediments, resulting in variable and negative d13C signals. The change in carbonate mineralogy reflects major compositional differences compared to sediments in Unit IV. Most prominent is an increase in altered ash as a primary sediment component and a sudden decrease of siliceous microfossils. Upward diffusion of cations, lowered salinities in pore waters, and elevated temperatures provide diagenetic environments favoring increased remobilization processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Corg and Norg contents in the acid insoluble mineral fraction were studied in sediments of Site 593. Both decrease systematically from Recent to early Miocene over 425 m of carbonate facies. C/N ratios (7-11) are typically marine and indicate that residual organic matter, bound to clay minerals, was originally scavenged from the marine habitat rather than being of terrigenous origin. Variations of Corg and Norg are almost entirely controlled by rates of sedimentation, which gradually increase from Recent to early Miocene. Preliminary results of carbohydrate distribution indicate that epigenetic and diagenetic processes alter both the concentrations and the ratios of individual monomers with depth. Total carbohydrate concentrations in the samples diminish from 91 µg/g sediment at 18 m sub-bottom depth to 49 µg/g at 335 m. In contrast, sugars in the acid insoluble residue increase with depth, suggesting release of structural polysaccharides and their subsequent association with clay minerals. Ratios of arabinose to fucose, which are about 6:1 in Recent carbonaceous sediments intercepted by sediment traps, vary from 1:1 in the youngest sample to 1:2.5 in the oldest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineralogy and stable (O and C) and Sr isotopic compositions of low-temperature alteration phases were determined in Hole 735B gabbroic rocks in order to understand the processes of low-temperature alteration in this uplifted block of lower oceanic crust. Phyllosilicates include smectite (saponite, Mg montmorillonite, and nontronite), chlorite/smectite, chlorite, talc, and serpentine. Other phases include prehnite, albite, K-feldspar, analcite, natrolite, thompsonite, pyrite, and titanite. The low-grade mineral assemblages mainly represent zeolite facies and lower-temperature "seafloor weathering" processes. Phyllosilicates formed over a range of temperatures but may also reflect variable reaction progress. Alteration temperatures were probably somewhat greater below 1300 meters below seafloor. Mineralogy and isotopic data indicate that conditions were mostly reducing and that seawater solutions were rock dominated. Carbonates formed late from cold and generally oxidizing seawater solution, however, as seawater penetrated downward as the result of fracturing and faulting in the uppermost portion of the uplifted crustal block.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of mineralogical and isotopic analyzes of sulfur and carbon in carbonate nodules and host bottom sediments and results of 14C measurement in carbonate nodules are reported. It is proved that the carbonate nodules formed 11-22 thousand years ago in anaerobic diagenesis of bottom sediments rich in organic matter. Isotopic light metabolic carbon dioxide was a source of carbonate for nodules. It formed during microbial degradation of organic matter of bottom sediments.