992 resultados para Calorimetry.
Resumo:
The crystallisation behaviour of three fat blends, comprising a commercial shortening, a blend of fats with a very low trans fatty acid content ("low-trans") and a blend including hardened rapeseed oil with a relatively high trans fatty acid content ("high-trans") was studied. Molten fats were lowered to a temperature of 31 degrees C and stirred for 0, 15, 30, 45 and 60 min. Samples were removed and their rheological properties studied, using a controlled stress rheometer, employing a frequency sweep procedure. Effects of the progressive crystallisation at 31 degrees C on the melting profile of fat samples removed from the stirred vessel and solidified at -20 degrees C were also studied by differential scanning calorimetry (DSC). The rheological profiles obtained suggested that all of the fats studied had weak viscoelastic "liquid" structures when melted, but these changed to structures perceived by the rheometer as weak viscoelastic "gels" in the early stages of crystallisation (G' (storage modulus) > G" (loss modulus) over most of the measured frequency range). These subsequently developed into weak viscoelastic semi-solids, showing frequency dependent behaviour on further crystallisation. These changes in behaviour were interpreted as changes from a small number of larger crystals "cross-linking" in a liquid matrix to a larger number of smaller crystals packed with a "slip plane" of liquid oil between them. The rate of crystallisation of the three fats was in the order high trans > low-trans > commercial shortening. Changes in the DSC melting profile due to fractionation of triacylglycerols during the crystallisation at 31 degrees C were evident for all three fats. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Microcrystalline cellulose (MCC) and cross-linked polyvinylpyrrolidone (PVP-CL) were examined as polymeric carriers to support amorphous ibuprofen (IB). Drug/cartier systems were prepared as physical mixes, and drug was loaded onto the polymers by hot mix and solvent deposition methods. The systems were examined using differential scanning calorimetry (DSC), X-ray powder diffractometry (XRD) and by dissolution testing. PVP-CL reduced drug crystallinity more than MCC and, surprisingly, even very simple mixing of ibuprofen with PVP-CL induced disordering of the drug. Increased ibuprofen dissolution rates were achieved with both polymers, in the order of solvent deposition > hot mixes > physical mixes. The increased dissolution rates could be attributed to a combination of faster dissolution from amorphous ibuprofen, microcrystalline drug deposition on carrier surfaces and polymer swelling. However, no clear relationship was observed between ibuprofen dissolution rates (using first order, Higuchi or Hixson-Crowell relationships) and drug crystallinity. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Ibuprofen (IB), a BCS Class II compound, is a highly crystalline substance with poor solubility properties. Here we report on the disruption of this crystalline structure upon intimate contact with the polymeric carrier cross-linked polyvinylpyrrolidone (PVP-CL) facilitated by low energy simple mixing. Whilst strong molecular interactions between APIs and carriers within delivery systems would be expected on melting or through solvent depositions, this is not the case with less energetic mixing. Simple mixing of the two compounds resulted in a significant decrease in the differential scanning calorimetry (DSC) melting enthalpy for IB, indicating that approximately 30% of the crystalline content was disordered. This structural change was confirmed by broadening and intensity diminution of characteristic IB X-ray powder diffractometry (PXRD) peaks. Unexpectedly, the crystalline content of the drug continued to decrease upon storage under ambient conditions. The molecular environment of the mixture was further investigated using Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectroscopy. These data suggest that the primary interaction between these components of the physical mix is hydrogen bonding, with a secondary mechanism involving electrostatic/hydrophobic interactions through the IB benzene ring. Such interactions and subsequent loss of crystallinity could confer a dissolution rate advantage for IB. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Poly(acrylic acid) forms insoluble hydrogen-bonded interpolymer complexes with methylcellulose in aqueous solutions under acidic conditions. In this work the reaction heats and binding constants were determined for the complexation between poly(acrylic acid) and methylcellulose by isothermal titration calorimetry at different pH and findings are correlated with the aggregation processes occurring in this system. The principal contribution to the complexation heat results from primary polycomplex particle aggregation. Transmission electron microscopy of nanoparticles produced at pH 1.4 and 2.4 demonstrated that they are spherical and dense structures. The nanoparticles ranged from 80 to 200 nm, whereas particles formed at pH 3.2 were 20-30 nm and were stabilized against aggregation by a network of uncomplexed macromolecules. For the first time, multilayered materials were developed on the basis of hydrogen-bonded complexes of poly(acrylic acid) and methylcellulose using layer-by-layer deposition on a glass surface. The thickness of these films was a linear function of the number of deposition cycles. The materials were subsequently cross-linked by thermal treatment, resulting in ultrathin hydrogels which detached from the glass substrate upon swelling. The swelling capacity of ultrathin hydrogels differed from the swelling of the thicker films of a similar chemical composition.
Resumo:
Hydrophilic polymeric films based on blends of hydroxyethylcellulose and maleic acid-co-methyl vinyl ether were produced by casting from aqueous solutions. The physicochemical properties of the blends have been assessed using Fourier transform infrared spectroscopy, thermal gravimetric analysis, differential scanning calorimetry, dielectric spectroscopy, etc. The pristine films exhibit complete miscibility due to the formation of intermacromolecular hydrogen bonding. The thermal treatment of the blend films leads to cross-linking via intermacromolecular esterification and anhydride formation. The cross-linked materials are able to swell in water and their swelling degree can be easily controlled by temperature and thermal treatment time. The formation of the crosslinks is apparent in the dynamic properties of the blends as observed through the mechanical relaxation and dielectric relaxation spectra. The dielectric characteristics of the material are influenced by the effects of change in the local structure of the blend on the ionic conduction processes and the rate of dipolar relaxation. Separation of these processes is attempted using the dielectric modulus method. Significant deviations from a simple additive rule of mixing on the activation energy are observed consistent with hydrogen bonding and crosslinking of the matrix. This paper indicates a method for the creation of films with good mechanical and physical characteristics by exposing the blends to a relatively mild thermal treatment.
Resumo:
An important step in liposome characterization is to determine the location of a drug within the liposome. This work thus investigated the interaction of dipalmitoylphosphatidylcholine liposomes with drugs of varied water solubility, polar surface area (PSA) and partition coefficient using high sensitivity differential scanning calorimetry. Lipophilic estradiol (ES) interacted strongest with the acyl chains of the lipid membrane, followed by the somewhat polar 5-fluorouracil (5-FU). Strongly hydrophilic mannitol (MAN) showed no evidence of interaction but water soluble polymers inulin (IN) and an antisense oligonucleotide (OLG), which have very high PSAs, interacted with the lipid head groups. Accordingly, the drugs could be classified as: hydrophilic ones situated in the aqueous core and which may interact with the head groups; those located at the water-bilayer interface with some degree of penetration into the lipid bilayer; those lipophilic drugs constrained within the bilayer. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The interaction between pentagalloyl glucose (PGG) and two globular proteins, bovine serum albumin (BSA) and ribulose-1,5-bisphosphate carboxylase oxygenase (rubisco), was investigated by isothermal titration calorimetry (ITC). ITC data fit to a binding model consisting of two sets of multiple binding sites, which reveal similarities in the mode of binding of PGG to BSA and rubisco. In both cases, the interaction is characterized by a high number of binding sites, which suggests that binding occurs by a surface adsorption mechanism that leads to coating of the protein surface, which promotes aggregation and precipitation of the PGG-protein complex. This model was confirmed by turbidimetry analysis of the PGG-BSA interaction. Analysis of tryptophan fluorescence quenching during the interaction of PGG with BSA suggests that binding of PGG leads to some conformational changes that are energetically closer to the unfolded state of the BSA structure, because small red shifts in the resulting emission spectra were observed.
Resumo:
An aqueous solution of a poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) (PEG-PCL-PEG) with a composition of EG13CL23EG13 undergoes multiple transitions, from sol-to-gel (hard gel)-to-sol-to-gel (soft gel)-to-sol, in the concentration range 20.0∼35.0 wt.-%. Through dynamic mechanical analysis, UV-vis spectrophotometry, small angle X-ray scattering, differential scanning calorimetry, microcalorimetry and 13C NMR spectroscopy, the mechanism of these transitions was investigated. The hard gel and soft gel are distinguished by the crystalline and amorphous state of the PCL. The extent of PEG dehydration and the molecular motion of each block also played a critical role in the multiple transitions. This paper suggests a new mechanism for these multiple transitions driven by temperature changes.
Resumo:
The principal driver of nitrogen (N) losses from the body including excretion and secretion in milk is N intake. However, other covariates may also play a role in modifying the partitioning of N. This study tests the hypothesis that N partitioning in dairy cows is affected by energy and protein interactions. A database containing 470 dairy cow observations was collated from calorimetry experiments. The data include N and energy parameters of the diet and N utilization by the animal. Univariate and multivariate meta-analyses that considered both within and between study effects were conducted to generate prediction equations based on N intake alone or with an energy component. The univariate models showed that there was a strong positive linear relationships between N intake and N excretion in faeces, urine and milk. The slopes were 0.28 faeces N, 0.38 urine N and 0.20 milk N. Multivariate model analysis did not improve the fit. Metabolizable energy intake had a significant positive effect on the amount of milk N in proportion to faeces and urine N, which is also supported by other studies. Another measure of energy considered as a covariate to N intake was diet quality or metabolizability (the concentration of metabolizable energy relative to gross energy of the diet). Diet quality also had a positive linear relationship with the proportion of milk N relative to N excreted in faeces and urine. Metabolizability had the largest effect on faeces N due to lower protein digestibility of low quality diets. Urine N was also affected by diet quality and the magnitude of the effect was higher than for milk N. This research shows that including a measure of diet quality as a covariate with N intake in a model of N execration can enhance our understanding of the effects of diet composition on N losses from dairy cows. The new prediction equations developed in this study could be used to monitor N losses from dairy systems.
Resumo:
A dynamic, mechanistic model of enteric fermentation was used to investigate the effect of type and quality of grass forage, dry matter intake (DMI) and proportion of concentrates in dietary dry matter (DM) on variation in methane (CH(4)) emission from enteric fermentation in dairy cows. The model represents substrate degradation and microbial fermentation processes in rumen and hindgut and, in particular, the effects of type of substrate fermented and of pH oil the production of individual volatile fatty acids and CH, as end-products of fermentation. Effects of type and quality of fresh and ensiled grass were evaluated by distinguishing two N fertilization rates of grassland and two stages of grass maturity. Simulation results indicated a strong impact of the amount and type of grass consumed oil CH(4) emission, with a maximum difference (across all forage types and all levels of DM 1) of 49 and 77% in g CH(4)/kg fat and protein corrected milk (FCM) for diets with a proportion of concentrates in dietary DM of 0.1 and 0.4, respectively (values ranging from 10.2 to 19.5 g CH(4)/kg FCM). The lowest emission was established for early Cut, high fertilized grass silage (GS) and high fertilized grass herbage (GH). The highest emission was found for late cut, low-fertilized GS. The N fertilization rate had the largest impact, followed by stage of grass maturity at harvesting and by the distinction between GH and GS. Emission expressed in g CH(4)/kg FCM declined oil average 14% with an increase of DMI from 14 to 18 kg/day for grass forage diets with a proportion of concentrates of 0.1, and on average 29% with an increase of DMI from 14 to 23 kg/day for diets with a proportion of concentrates of 0.4. Simulation results indicated that a high proportion of concentrates in dietary DM may lead to a further reduction of CH, emission per kg FCM mainly as a result of a higher DM I and milk yield, in comparison to low concentrate diets. Simulation results were evaluated against independent data obtained at three different laboratories in indirect calorimetry trials with COWS consuming GH mainly. The model predicted the average of observed values reasonably, but systematic deviations remained between individual laboratories and root mean squared prediction error was a proportion of 0.12 of the observed mean. Both observed and predicted emission expressed in g CH(4)/kg DM intake decreased upon an increase in dietary N:organic matter (OM) ratio. The model reproduced reasonably well the variation in measured CH, emission in cattle sheds oil Dutch dairy farms and indicated that oil average a fraction of 0.28 of the total emissions must have originated from manure under these circumstances.
Resumo:
Interpenetrating polymeric networks based on sodium alginate and poly(N-isopropylacrylamide) (PNIPAAm) covalently crosslinked with N,N′-methylenebisacrylamide have been investigated using rheology, thermogravimetry, differential scanning calorimetry, X-ray diffraction measurements and scanning electron microscopy (SEM). An improved elastic response of the samples with a higher PNIPAAm content and increased amount of crosslinking agent was found. The temperature-responsive behaviour of the hydrogel samples was evidenced by viscoelastic measurements performed at various temperatures. It is shown that the properties of these gels can be tuned according to composition, amount of crosslinking agent and temperature changes. X-ray scattering analysis revealed that the hydrophobic groups are locally segregated even in the swollen state whilst cryo-SEM showed the highly heterogeneous nature of the gels.
Resumo:
The synthesis of methacrylate esters of 4-cyanophenyl-(4-(ω-hydroxyalkyloxy)) cinnamates, with spacer lengths of 2 and 6 methylene units and the synthesis of the corresponding acrylate ester with a spacer of 2 methylene units are described. The methacrylate monomers were polymerized by free radical polymerization, both as homopolymers and as copolymers with the analogous benzoate monomer of spacer length 6. The acrylate ester could not be polymerized successfully under the same reaction conditions. Polymers were characterized by NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry, and thermo-optic observations. Of the monomers prepared, only the cinnamate with a hexamethylene spacer shows a mesophase, seen on supercooling of the melt. All of the polymers prepared were liquid crystalline, with smectic behavior predominating in the polymethacrylates with the longer spacer group. A narrow nematic region is seen just below the clearing temperature with a range of 3–9°C, nematic character is increased in the copolymer series with the degree of incorporation of the cinnamate monomer with the spacer group of length 2.
Resumo:
The solubility of penciclovir (C10N5O3H17) in a novel film formulation designed for the treatment of cold sores was determined using X-ray, thermal, microscopic and release rate techniques. Solubilities of 0.15–0.23, 0.44, 0.53 and 0.42% (w/w) resulted for each procedure. Linear calibration lines were achieved for experimentally and theoretically determined differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) data. Intra- and inter-batch data precision values were determined; intra values were more precise. Microscopy was additionally useful for examining crystal shape, size distribution and homogeneity of drug distribution within the film. Whereas DSC also determined melting point, XRPD identified polymorphs and release data provided relevant kinetics.
Resumo:
Incorporating edge activators (surfactants) into liposomes was shown previously to improve estradiol vesicular skin delivery; this phenomenon was concentration dependent with low or high concentrations being less effective. Replacing surfactants with limonene produced similar behaviour, but oleic acid effects were linear with concentration up to 16% (w/w), beyond which it was incompatible with the phospholipid. This present study thus employed high sensitivity differential scanning calorimetry to probe interactions of additives with ipalmitoylphosphatidylcholine (DPPC) membranes to explain such results. Cholesterol was included as an example of a membrane stabiliser that removed the DPPC pre-transition and produced vesicles with a higher transition temperature (Tm). Surfactants also removed the lipid pre-transition but reduced Tm and co-operativity of the main peak. At higher concentrations, surfactants also formed new species, possibly mixed micelles with a lower Tm. The formation of mixed micelles may explain reduced skin delivery from liposomes containing high concentrations of surfactants. Limonene did not remove the pre-transition but reduced Tm and co-operativity of the main peak, apparently forming new species at high concentrations, again correlating with vesicular delivery of estradiol. Oleic acid obliterated the pre-transition. The Tm and the co-operativity of the main peak were reduced with oleic acid concentrations up to 33.2 mol%, above which there was no further change. At higher concentrations, phase separation was evident, confirming previous skin transport findings.
Resumo:
Abstract In a continuing study to improve the efficiency of dormant bud cryopreservation for tissues hardened in maritime climates, the water status of dormant buds was monitored between -4°C and recovery from liquid nitrogen (LN). Measurement of water content, simple thermal analysis and differential scanning calorimetry were employed. Buds did not lose water during cooling to, or holding at -30°C indicating that cryodehydration and/or other adaptive responses contributed during this essential step. A bud exotherm that was an artefact of warming was detected due to necessary handling at -4°C before cooling to -30°C. There were no significant differences between cultivars with respect to water status at -30°C or immediately upon rewarming from LN despite significant differences in post-LN survival. Buds rehydrated in 5 days, but up to 14 days may be needed for recovery for some cultivars. In some instances buds could be grafted without rehydration, taking up water across the early graft union.