988 resultados para Calibration
Resumo:
Dilutions of methylmetacrylate ranging between 1 and 50 ppm were obtained from a stock solution of 1 ml of monomer in 100 ml of deionised water, and were analyzed by an absorption spectrophotometer in the UV-visible. Absorbance values were used to develop a calibration model based on the PLS, with the aim to determine new sample concentrations. The number of latent variables used was 6, with the standard errors of calibration and prediction found to be 0,048 ml/100 ml and 0,058 ml/100 ml. The calibration model was successfully used to calculate the concentration of monomer released in water, where complete dentures were kept for one hour after polymerization.
Resumo:
A method is presented for the choice of spectral regions when absorption measurements are coupled to chemometric tools to perform quantitative analyses. The method is based on the spectral distribution of the relative standard deviation of concentration (s c/c). It has been applied to the development of PLS-FTNIR calibration models for the determination of density and MON of gasoline, and ethanol content and density of ethanol fuel. The new method was also compared with the correlation (R²) method and has proved to generate PLS calibration models that present better accuracy and precision than those based on R².
Resumo:
Procion Green HE-4BD is a reactive dye currently used in affinity purification, and commonly present as a contaminant in the final biological preparation. An assay method is described to determine trace amounts of the dye in the presence of human serum albumin(HSA) and leakage from agarose as affinity sorbent by cathodic stripping voltammetry. The proposed method is based on the reductive peak at -0.55V in B-R buffer pH 3 (E=0V and t= 240s), obtained when samples of HSA 2% (m/v) containing dye concentrations in sodium hydroxide pH 12 are submitted to a heating time of 330 min at 80 ºC. Linear calibration curves can be obtained for RG19 dye concentrations from 5x10-9 mol L-1 to 8 x10-8 mol L-1. The detection limit (3sigma) is 1x10-9 mol L-1.
Resumo:
Interlaboratorial programs are conducted for a number of purposes: to identify problems related to the calibration of instruments, to assess the degree of equivalence of analytical results among several laboratories, to attribute quantity values and its uncertainties in the development of a certified reference material and to verify the performance of laboratories as in proficiency testing, a key quality assurance technique, which is sometimes used in conjunction with accreditation. Several statistics tools are employed to assess the analytical results of laboratories participating in an intercomparison program. Among them are the z-score technique, the elypse of confidence and the Grubbs and Cochran test. This work presents the experience in coordinating an intercomparison exercise in order to determine Ca, Al, Fe, Ti and Mn, as impurities in samples of silicon metal of chemical grade prepared as a candidate for reference material.
Resumo:
The application of analytical procedures based on multivariate calibration models has been limited in several areas due to requirements of validation and certification of the model. Procedures for validation are presented based on the determination of figures of merit, such as precision (mean, repeatability, intermediate), accuracy, sensitivity, analytical sensitivity, selectivity, signal-to-noise ratio and confidence intervals for PLS models. An example is discussed of a model for polymorphic purity control of carbamazepine by NIR diffuse reflectance spectroscopy. The results show that multivariate calibration models can be validated to fulfill the requirements imposed by industry and standardization agencies.
Resumo:
Human activities have resulted in increased nutrient levels in many rivers all over Europe. Sustainable management of river basins demands an assessment of the causes and consequences of human alteration of nutrient flows, together with an evaluation of management options. In the context of an integrated and interdisciplinary environmental assessment (IEA) of nutrient flows, we present and discuss the application of the nutrient emission model MONERIS (MOdelling Nutrient Emissions into River Systems) to the Catalan river basin, La Tordera (north-east Spain), for the period 1996–2002. After a successful calibration and verification process (Nash-Sutcliffe efficiencies E=0.85 for phosphorus and E=0.86 for nitrogen), the application of the model MONERIS proved to be useful in estimating nutrient loads. Crucial for model calibration, in-stream retention was estimated to be about 50 % of nutrient emissions on an annual basis. Through this process, we identified the importance of point sources for phosphorus emissions (about 94% for 1996–2002), and diffuse sources, especially inputs via groundwater, for nitrogen emissions (about 31% for 1996–2002). Despite hurdles related to model structure, observed loads, and input data encountered during the modelling process, MONERIS provided a good representation of the major interannual and spatial patterns in nutrient emissions. An analysis of the model uncertainty and sensitivity to input data indicates that the model MONERIS, even in data-starved Mediterranean catchments, may be profitably used by water managers for evaluating quantitative nutrient emission scenarios for the purpose of managing river basins. As an example of scenario modelling, an analysis of the changes in nutrient emissions through two different future scenarios allowed the identification of a set of relevant measures to reduce nutrient loads.
Resumo:
The spectrophotometric determination of Cd(II) using a flow injection system provided with a solid-phase reactor for cadmium preconcentration and on-line reagent preparation, is described. It is based on the formation of a dithizone-Cd complex in basic medium. The calibration curve is linear between 6 and 300 µg L-1 Cd(II), with a detection limit of 5.4 µg L-1, an RSD of 3.7% (10 replicates in duplicate) and a sample frequency of 11.4 h-1. The proposed method was satisfactorily applied to the determination of Cd(II) in surface, well and drinking waters.
Resumo:
The Grande Coupure represents a major terrestrial faunal turnover recorded in Eurasia associated with the overall climate shift at the Eocene-Oligocene transition. During this event, a large number of European Eocene endemic mammals became extinct and new Asian immigrants appeared. The absolute age of the Grande Coupure, however, has remained controversial for decades. The Late Eocene-Oligocene continental record of the Eastern Ebro Basin (NE Spain) constitutes a unique opportunity to build a robust magnetostratigraphy- based chronostratigraphy which can contribute with independent age constraints for this important turnover. This study presents new magnetostratigraphic data of a 495-m-thick section (Moià-Santpedor) that ranges from 36.1 Ma to 33.3 Ma. The integration of the new results with previous litho- bio- and magnetostratigraphic records of the Ebro Basin yields accurate ages for the immediately pre- and post-Grand Coupure mammal fossil assemblages found in the study area, bracketing the Grande Coupure to an age embracing the Eocene-Oligocene transition, with a maximum allowable lag of 0.5 Myr with respect to this boundary. The shift to drier conditions that accompanied the global cooling at the Eocene-Oligocene transition probably determined the sedimentary trends in the Eastern Ebro Basin. The occurrence and expansion of an amalgamated-channel sandstone unit is interpreted as the forced response of the fluvial fan system to the transient retraction of the central-basin lake systems. The new results from the Ebro Basin allow us to revisit correlations for the controversial Eocene-Oligocene record of the Hampshire Basin (Isle of Wight, UK), and their implications for the calibration of the Mammal Palaeogene reference levels MP18 to MP21.
Resumo:
In this work, a partial least squares regression routine was used to develop a multivariate calibration model to predict the chemical oxygen demand (COD) in substrates of environmental relevance (paper effluents and landfill leachates) from UV-Vis spectral data. The calibration models permit the fast determination of the COD with typical relative errors lower by 10% with respect to the conventional methodology.
Resumo:
Since the last decade, the combined use of chemometrics and molecular spectroscopic techniques has become a new alternative for direct drug determination, without the need of physical separation. Among the new methodologies developed, the application of PARAFAC in the decomposition of spectrofluorimetric data should be highlighted. The first objective of this article is to describe the theoretical basis of PARAFAC. For this purpose, a discussion about the order of chemometric methods used in multivariate calibration and the development of multi-dimensional methods is presented first. The other objective of this article is to divulge for the Brazilian chemical community the potential of the combination PARAFAC/spectrofluorimetry for the determination of drugs in complex biological matrices. For this purpose, two applications aiming at determining, respectively, doxorrubicine and salicylate in human plasma are presented.
Resumo:
This thesis concentrates on developing a practical local approach methodology based on micro mechanical models for the analysis of ductile fracture of welded joints. Two major problems involved in the local approach, namely the dilational constitutive relation reflecting the softening behaviour of material, and the failure criterion associated with the constitutive equation, have been studied in detail. Firstly, considerable efforts were made on the numerical integration and computer implementation for the non trivial dilational Gurson Tvergaard model. Considering the weaknesses of the widely used Euler forward integration algorithms, a family of generalized mid point algorithms is proposed for the Gurson Tvergaard model. Correspondingly, based on the decomposition of stresses into hydrostatic and deviatoric parts, an explicit seven parameter expression for the consistent tangent moduli of the algorithms is presented. This explicit formula avoids any matrix inversion during numerical iteration and thus greatly facilitates the computer implementation of the algorithms and increase the efficiency of the code. The accuracy of the proposed algorithms and other conventional algorithms has been assessed in a systematic manner in order to highlight the best algorithm for this study. The accurate and efficient performance of present finite element implementation of the proposed algorithms has been demonstrated by various numerical examples. It has been found that the true mid point algorithm (a = 0.5) is the most accurate one when the deviatoric strain increment is radial to the yield surface and it is very important to use the consistent tangent moduli in the Newton iteration procedure. Secondly, an assessment of the consistency of current local failure criteria for ductile fracture, the critical void growth criterion, the constant critical void volume fraction criterion and Thomason's plastic limit load failure criterion, has been made. Significant differences in the predictions of ductility by the three criteria were found. By assuming the void grows spherically and using the void volume fraction from the Gurson Tvergaard model to calculate the current void matrix geometry, Thomason's failure criterion has been modified and a new failure criterion for the Gurson Tvergaard model is presented. Comparison with Koplik and Needleman's finite element results shows that the new failure criterion is fairly accurate indeed. A novel feature of the new failure criterion is that a mechanism for void coalescence is incorporated into the constitutive model. Hence the material failure is a natural result of the development of macroscopic plastic flow and the microscopic internal necking mechanism. By the new failure criterion, the critical void volume fraction is not a material constant and the initial void volume fraction and/or void nucleation parameters essentially control the material failure. This feature is very desirable and makes the numerical calibration of void nucleation parameters(s) possible and physically sound. Thirdly, a local approach methodology based on the above two major contributions has been built up in ABAQUS via the user material subroutine UMAT and applied to welded T joints. By using the void nucleation parameters calibrated from simple smooth and notched specimens, it was found that the fracture behaviour of the welded T joints can be well predicted using present methodology. This application has shown how the damage parameters of both base material and heat affected zone (HAZ) material can be obtained in a step by step manner and how useful and capable the local approach methodology is in the analysis of fracture behaviour and crack development as well as structural integrity assessment of practical problems where non homogeneous materials are involved. Finally, a procedure for the possible engineering application of the present methodology is suggested and discussed.
Resumo:
A square wave voltammetric method is described for the determination of acetaldehyde using the derivatization reaction with hydrazine sulphate, based on the reduction of hydrazone generated as a product that exhibits a single well-defined peak at -1.19V in acetate buffer at pH 5. Calibration graphs were obtained from 1.0 x 10-6 mol L-1 to 10 x 10-6 mol L-1 of acetaldehyde, using a reaction time of 8 min and a hidrazine concentration of 0.02 mol L-1. The detection limit was 2.38 x 10-7 mol L-1. The method was applied satisfactorily to the determination of total aldehyde in fuel ethanol samples without any pre-treatment.
Resumo:
Simple experiments are proposed for measuring molecular absorption of chromate and dichromate ions using an atomic absorption spectrometer. The experiments can help undergraduate students in instrumental analysis courses understand important aspects involving conceptual and instrumental similarities and differences between frequently used analytical techniques. Hollow cathode lamps were selected with wavelengths in the region of molecular absorption of chromate and dichromate. Calibration curves were obtained and the linear dynamic range was evaluated. Results were compared with those obtained in a molecular absorption spectrometer. The molar absorptivities obtained were also compared.
Resumo:
Euroopan unionin direktiiveissä ja kansallisessa lainsäädännössä on asetettu tavoitteita, velvoitteita ja raja-arvoja ilmanlaadun mittauksille. Ilmanlaatua on seurattava, ilmanlaatumittaukset on tehtävä laadukkaasti sekä luotettavasti ja mittaustuloksista on tiedotettava väestölle. Mittausten epävarmuus on tunnettava ja sen on oltava alle 15 %, jotta epävarmuudelle asetettu kriteeri täyttyy. Tässä työssä perehdyttiin Euroopan unionin ilmastopolitiikkaan ja kansalliseen ilmanlaatua koskevaan lainsäädäntöön, käytiin läpi menetelmiä ja tapoja, joilla ilmanlaadusta tiedotetaan väestölle sekä selvitettiin ilmanlaadun mittausjärjestelmiä koskevia vaatimuksia. Ennen varsinaista mittausepävarmuuden selvittämistä käytiin läpi tutkimuksen kohteena olevan typen oksidien analysaattorin mittausperiaate ja merkittävimmät komponentit. Mittausepävarmuus määritettiin standardia SFS-EN 14211 noudattamalla. Mittausepävarmuuden selvittämiseksi analysaattorille tehtiin erilaisia sen toimintaa kuvaavia testejä Ilmatieteen laitoksen kalibrointilaboratoriossa. Saatujen tuloksien perusteella voitiin laskea analysaattorin mittausepävarmuus, joka tuntiraja-arvopitoisuudessa oli 15,5 % ja vuosiraja-arvopitoisuudessa 10,5 %. Kaikkia testejä ei voitu tehdä standardissa määrätyllä tavalla, joten tuloksiin pitää suhtautua kriittisesti. Tulosten perusteella mittausepävarmuus tuntiraja-arvopitoisuudessa ei aivan täytä direktiivin kriteeriä, mutta vuosiraja-arvopitoisuudessa kriteeri täyttyy (< 15 %).
Resumo:
Chemometric activities in Brazil are described according to three phases: before the existence of microcomputers in the 1970s, through the initial stages of microcomputer use in the 1980s and during the years of extensive microcomputer applications of the ´90s and into this century. Pioneering activities in both the university and industry are emphasized. Active research areas in chemometrics are cited including experimental design, pattern recognition and classification, curve resolution for complex systems and multivariate calibration. New trends in chemometrics, especially higher order methods for treating data, are emphasized.