967 resultados para CYCLE EXERCISE
Resumo:
In the present investigation we studied some behavioral and immunological parameters of adult gastropod mollusk, Biomphalaria tenagophila, which have been reproducing for several generations under laboratory conditions. One group of gastropods was kept on a 14-h light/10-h dark cycle, corresponding to a regular circadian cycle, and another group was exposed to continuous light for 48 h. Animals were studied along (behavioral groups) or immediately after (immunological groups) 48 h of regular circadian cycle or continuous light conditions. Stopping/floating, dragging and sliding were the behavioral aspects considered (N = 20 for regular cycle; N = 20 for continuous illumination) and number of hemocytes/µl hemolymph was the immunological parameter studied (N = 15 for regular cycle, N = 14 for continuous illumination). Animals under continuous illumination were more active (sliding = 33 episodes, dragging = 48 episodes) and displayed a lower number of hemocytes (78.0 ± 24.27/µl) when compared with mollusks kept on a regular circadian cycle (sliding = 18 episodes, dragging = 27 episodes; hemocytes = 157.6 ± 53.27/µl). The data are discussed in terms of neural circuits and neuroimmunological relations with the possible stressful effect of continuous illumination.
Effects of exercise training on autonomic and myocardial dysfunction in streptozotocin-diabetic rats
Resumo:
Several investigators have demonstrated that diabetes is associated with autonomic and myocardial dysfunction. Exercise training is an efficient non-pharmacological treatment for cardiac and metabolic diseases. The aim of the present study was to investigate the effects of exercise training on hemodynamic and autonomic diabetic dysfunction. After 1 week of diabetes induction (streptozotocin, 50 mg/kg, iv), male Wistar rats (222 ± 5 g, N = 18) were submitted to exercise training for 10 weeks on a treadmill. Arterial pressure signals were obtained and processed with a data acquisition system. Autonomic function and intrinsic heart rate were studied by injecting methylatropine and propranolol. Left ventricular function was assessed in hearts perfused in vitro by the Langendorff technique. Diabetes (D) bradycardia and hypotension (D: 279 ± 9 bpm and 91 ± 4 mmHg vs 315 ± 11 bpm and 111 ± 4 mmHg in controls, C) were attenuated by training (TD: 305 ± 7 bpm and 100 ± 4 mmHg). Vagal tonus was decreased in the diabetic groups and sympathetic tonus was similar in all animals. Intrinsic heart rate was lower in D (284 ± 11 bpm) compared to C and TD (390 ± 8 and 342 ± 14 bpm, respectively). Peak systolic pressure developed at different pressures was similar for all groups, but +dP/dt max was decreased and -dP/dt max was increased in D. In conclusion, exercise training reversed hypotension and bradycardia and improved myocardial function in diabetic rats. These changes represent an adaptive response to the demands of training, supporting a positive role of physical activity in the management of diabetes.
Resumo:
The purpose of this study was to investigate the effect of the level of injury on the serum level of norepinephrine (Nor) and epinephrine (Epi) at rest and after maximal exercise in individuals with paraplegia. Twenty-six male spinal cord-injured subjects with complete paraplegia for at least 9 months were divided into two groups of 13 subjects each according to the level of injury, i.e., T1-T6 and T7-T12. Serum Nor and Epi concentrations were measured by HPLC-ECD, at rest (PRE) and immediately after a maximal ergospirometric test (POST). Statistical analysis was performed using parametric and non-parametric tests. Maximal heart rate, peak oxygen uptake, and PRE and POST Nor were lower in the T1-T6 than in the T7-T12 group (166 ± 28 vs 188 ± 10 bpm; 18.0 ± 6.0 vs 25.8 ± 4.1 ml kg-1 min-1; 0.54 ± 0.26 vs 0.99 ± 0.47 nM; 1.48 ± 1.65 vs 3.07 ± 1.44 nM). Both groups presented a significant increase in Nor level after exercise, while only the T7-T12 group showed a significant increase in Epi after exercise (T1-T6: 0.98 ± 0.72 vs 1.11 ± 1.19 nM; T7-T12: 1.24 ± 1.02 vs 1.89 ± 1.57 nM). These data show that individuals with paraplegia above T6 have an attentuated catecholamine release at rest and response to exercise as compared to subjects with injuries below T6, which might prevent a better exercise performance in the former group.
Resumo:
Interest towards working capital management increased among practitioners and researchers because the financial crisis of 2008 caused the deterioration of the general financial situation. The importance of managing working capital effectively increased dramatically during the financial crisis. On one hand, companies highlighted the importance of working capital management as part of short-term financial management to overcome funding difficulties. On the other hand, in academia, it has been highlighted the need to analyze working capital management from a wider perspective namely from the value chain perspective. Previously, academic articles mostly discussed working capital management from a company-centered perspective. The objective of this thesis was to put working capital management in a wider and more academic perspective and present case studies of the value chains of industries as instrumental in theoretical contributions and practical contributions as complementary to theoretical contributions and conclusions. The principal assumption of this thesis is that selffinancing of value chains can be established through effective working capital management. Thus, the thesis introduces the financial value chain analysis method which is employed in the empirical studies. The effectiveness of working capital management of the value chains is studied through the cycle time of working capital. The financial value chain analysis method employed in this study is designed for considering value chain level phenomena. This method provides a holistic picture of the value chain through financial figures. It extends the value chain analysis to the industry level. Working capital management is studied by the cash conversion cycle that measures the length (days) of time a company has funds tied up in working capital, starting from the payment of purchases to the supplier and ending when remittance of sales is received from the customers. The working capital management practices employed in the automotive, pulp and paper and information and communication technology industries have been studied in this research project. Additionally, the Finnish pharmaceutical industry is studied to obtain a deeper understanding of the working capital management of the value chain. The results indicate that the cycle time of working capital is constant in the value chain context over time. The cash conversion cycle of automotive, pulp and paper, and ICT industries are on average 70, 60 and 40 days, respectively. The difference is mainly a consequence of the different cycle time of inventories. The financial crisis of 2008 affected the working capital management of the industries similarly. Both the cycle time of accounts receivable and accounts payable increased between 2008 and 2009. The results suggest that the companies of the automotive, pulp and paper and ICT value chains were not able to self-finance. Results do not indicate the improvement of value chains position in regard to working capital management either. The findings suggest that companies operating in the Finnish pharmaceutical industry are interested in developing their own working capital management, but collaboration with the value chain partners is not considered interesting. Competition no longer occurs between individual companies, but between value chains. Therefore the financial value chain analysis method introduced in this thesis has the potential to support value chains in improving their competitiveness.
Resumo:
Endometrium is one of the fastest growing human tissues. Sex hormones, estrogen and progesterone, in interaction with several growth factors, control its growth and differentiation. Insulin-like growth factor 1 (IGF-1) interacts with cell surface receptors and also with specific soluble binding proteins. IGF-binding proteins (IGF-BP) have been shown to modulate IGF-1 action. Of six known isoforms, IGF-BP-1 has been characterized as a marker produced by endometrial stromal cells in the late secretory phase and in the decidua. In the current study, IGF-1-BP concentration and affinity in the proliferative and secretory phase of the menstrual cycle were measured. Endometrial samples were from patients of reproductive age with regular menstrual cycles and taking no steroid hormones. Cytosolic fractions were prepared and binding of 125I-labeled IGF-1 performed. Cross-linking reaction products were analyzed by SDS-polyacrylamide gel electrophoresis (7.5%) followed by autoradiography. 125I-IGF-1 affinity to cytosolic proteins was not statistically different between the proliferative and secretory endometrium. An approximately 35-kDa binding protein was identified when 125I-IGF-1 was cross-linked to cytosol proteins. Secretory endometrium had significantly more IGF-1-BP when compared to proliferative endometrium. The specificity of the cross-linking process was evaluated by the addition of 100 nM unlabeled IGF-1 or insulin. Unlabeled IGF-1 totally abolished the radioactivity from the band, indicating specific binding. Insulin had no apparent effect on the intensity of the labeled band. These results suggest that IGF-BP could modulate the action of IGF-1 throughout the menstrual cycle. It would be interesting to study this binding protein in other pathologic conditions of the endometrium such as adenocarcinomas and hyperplasia.
Resumo:
The effects of short-term burst (5 min at 1.8 m/s) swimming and long-term cruiser (60 min at 1.2 m/s) swimming on maximal enzyme activities and enzyme distribution between free and bound states were assessed for nine glycolytic and associated enzymes in tissues of horse mackerel, Trachurus mediterraneus ponticus. The effects of exercise were greatest in white muscle. The activities of phosphofructokinase (PFK), pyruvate kinase (PK), fructose-1,6-bisphosphatase (FBPase), and phosphoglucomutase (PGM) all decreased to 47, 37, 37 and 67%, respectively, during 60-min exercise and all enzymes except phosphoglucoisomerase (PGI) and PGM showed a change in the extent of binding to subcellular particulate fractions during exercise. In red muscle, exercise affected the activities of PGI, FBPase, PFK, and lactate dehydrogenase (LDH) and altered percent binding of only PK and LDH. In liver, exercise increased the PK activity 2.3-fold and reduced PGI 1.7-fold only after 5 min of exercise but altered the percent binding of seven enzymes. Fewer effects were seen in brain, with changes in the activities of aldolase and PGM and in percent binding of hexokinase, PFK and PK. Changes in enzyme activities and in binding interactions with subcellular particulate matter appear to support the altered demands of tissue energy metabolism during exercise.
Resumo:
Borderline hypertension (BH) has been associated with an exaggerated blood pressure (BP) response during laboratory stressors. However, the incidence of target organ damage in this condition and its relation to BP hyperreactivity is an unsettled issue. Thus, we assessed the Doppler echocardiographic profile of a group of BH men (N = 36) according to office BP measurements with exaggerated BP in the cycloergometric test. A group of normotensive men (NT, N = 36) with a normal BP response during the cycloergometric test was used as control. To assess vascular function and reactivity, all subjects were submitted to the cold pressor test. Before Doppler echocardiography, the BP profile of all subjects was evaluated by 24-h ambulatory BP monitoring. All subjects from the NT group presented normal monitored levels of BP. In contrast, 19 subjects from the original BH group presented normal monitored BP levels and 17 presented elevated monitored BP levels. In the NT group all Doppler echocardiographic indexes were normal. All subjects from the original BH group presented normal left ventricular mass and geometrical pattern. However, in the subjects with elevated monitored BP levels, fractional shortening was greater, isovolumetric relaxation time longer, and early to late flow velocity ratio was reduced in relation to subjects from the original BH group with normal monitored BP levels (P<0.05). These subjects also presented an exaggerated BP response during the cold pressor test. These results support the notion of an integrated pattern of cardiac and vascular adaptation during the development of hypertension.