979 resultados para COM-Poisson distribution
Resumo:
The stage-specific distribution of Alaska plaice (Pleuronectes quadrituberculatus) eggs in the southeastern Bering Sea was examined with collections made in mid-May in 2002, 2003, 2005, and 2006. Eggs in the early stages of development were found primarily offshore of the 40-m isobath. Eggs in the middle and late stages of development were found inshore and offshore of the 40-m isobath. There was some evidence that early-stage eggs occur deeper in the water column than late-stage eggs, although year-to-year variability in that trend was observed. Most eggs were in the later stages of development; therefore the majority of spawning is estimated to have occurred a few weeks before collection—probably April—and may be highly synchronized among local spawning areas. Results indicate that sampling with continuous underway fish egg collectors(CUFES) should be supplemented with sampling of the entire water column to ensure adequate samples of all egg stages of Alaska plaice. Data presented offer new information on the stage-dependent horizontal and vertical distribution of Alaska plaice eggs in the Bering Sea and provide further evidence that the early life history stages of this species are vulnerable to near-surface variations in hydrographical conditions and climate forcing.
Resumo:
Most shallow-dwelling tropical marine fishes exhibit different activity patterns during the day and night but show similar transition behavior among habitat sites despite the dissimilar assemblages of the species. However, changes in species abundance, distribution, and activity patterns have only rarely been examined in temperate deepwater habitats during the day and night, where day-to-night differences in light intensity are extremely slight. Direct-observation surveys were conducted over several depths and habitat types on Heceta Bank, the largest rocky bank off the Oregon coast. Day and night fish community composition, relative density, and activity levels were compared by using videotape footage from a remotely operated vehicle (ROV) operated along paired transects. Habitat-specific abundance and activity were determined for 31 taxa or groups. General patterns observed were similar to shallow temperate day and night studies, with an overall increase in the abundance and activity of fishes during the day than at night, particularly in shallower cobble, boulder, and rock ridge habitats. Smaller schooling rockfishes (Sebastes spp.) were more abundant and active in day than in night transects, and sharpchin (S. zacentrus) and harlequin (S. variegatus) rockfish were significantly more abundant in night transects. Most taxa, however, did not exhibit distinct diurnal or nocturnal activity patterns. Rosethorn rockfish (S. helvomaculatus) and hagfishes (Eptatretus spp.) showed the clearest diurnal and nocturnal activity patterns, respectively. Because day and night distributions and activity patterns in demersal fishes are likely to influence both catchability and observability in bottom trawl and direct-count in situ surveys, the patterns observed in the current study should be considered for survey design and interpretation.
Resumo:
Ichthyoplankton surveys were conducted in shelf and slope waters of the northern Gulf of Mexico during the months of May–September in 2005 and 2006 to investigate the potential role of this region as spawning and nursery habitat of sailfish (Istiophorus platypterus). During the two-year study, 2426 sailfish larvae were collected, ranging in size from 2.0 to 24.3 mm standard length. Mean density for all neuston net collections (n=288) combined was 1.5 sailfish per 1000 m2, and maximum density was observed within frontal features created by hydrodynamic convergence (2.3 sailfish per 1000 m2). Sagittal otoliths were extracted from 1330 larvae, and otolith microstructure analysis indicated that the sailfish ranged in age from 4 to 24 days after hatching (mean=10.5 d, standard deviation [SD]=3.2 d). Instantaneous growth coefficients (g) among survey periods (n=5) ranged from 0.113 to 0.127, and growth peaked during July 2005 collections when density within frontal features was highest. Daily instantaneous mortality rates (Z) ranged from 0.228 to 0.381, and Z was indexed to instantaneous weight-specific growth (G) to assess stage-specific production potential of larval cohorts. Ratios of G to Z were greater than 1.0 for all but one cohort examined, indicating that cohorts were gaining biomass during the majority of months investigated. Stage-specific production potential, in combination with catch rates and densities of larvae, indicates that the Gulf of Mexico likely represents important spawning and nursery habitat for sailfish.
Resumo:
Citharichthys cornutus and C. gymnorhinus, diminutive flatfishes inhabiting continental shelves in the western Atlantic Ocean, are infrequently reported and poorly known. We identified 594 C. cornutus in 56 different field collections (68–287 m; most between 101–200 m) off the eastern United States, Bahamas, and eastern Caribbean Sea. Historical records and recently captured specimens document the northern geographic range of adults on the shelf off New Jersey (40°N, 70°W). Citharichthys cornutus measured 17.2–81.3 mm standard length (SL); males (20.0–79.1 mm SL) and females (28.0–81.3 mm SL) attain similar sizes (sex could not be determined for fish <20 mm SL). Males reach nearly 100% maturity at ≥60 mm SL. The smallest mature females are 41.5 mm SL, and by 55.1 mm SL virtually all are mature. Juveniles are found with adults on the outer shelf. Only 214 C. gymnorhinus were located in 42 different field collections (35–201 m, with 90% between 61 and 120 m) off the east coast of the United States, Bahamas, and eastern Caribbean Sea. Adults are found as far north as the shelf off Cape Hatteras, NC (35°N, 75°W). This diminutive species (to 52.4 mm SL) is among the smallest flatfishes but males (n=131; 20.3–52.4 mm SL) attain a slightly larger maximum size than that of females (n=58; 26.2–48.0 mm SL). Males begin to mature between 29 and 35 mm SL and reach 100% maturity by 35–40 mm SL. Some females are mature at 29 mm SL, and all females >35.1 mm SL are mature. Overlooked specimens in museum collections and literature enabled us to correct long-standing inaccuracies in northern distributional limits that appear in contemporary literature and electronic data bases for these species. Associated locality-data for these specimens allow for proper evaluation of distributional information for these species in relation to hypotheses regarding shifts in species ranges due to climate change effects.
Resumo:
We investigated estuarine spatial and temporal overlap of wild and marked hatchery chum salmon (Oncorhynchus keta) fry; the latter included two distinct size groups released near the Taku River estuary (Taku Inlet) in Southeast Alaska (early May releases of ~ 1.9 g and late May releases of ~ 3.9 g wet weight). Our objectives were to compare abundance, body size, and condition of wild chum salmon fry and hatchery chum salmon fry raised under early and late rearing strategies in different habitats of Taku Inlet and to document environmental factors that could potentially explain the distribution, size, and abundance of these chum salmon fr y. We used a sampling design stratified into inner and outer inlet and neritic and littoral habitats. Hatchery fry were rare in the inner estuary in both years but outnumbered wild fry 20:1 in the outer estuary. Hatchery fry were significantly larger than wild fry in both littoral and neritic samples. Abundances of wild and hatchery fry were positively correlated in the outer inlet, indicating the formation of mixed schools of hatchery and wild fry. Spatial and temporal overlap was greatest between wild and early hatchery fry in the outer inlet in both habitats. The early hatchery release coincided with peak abundances of wild fry in the outer inlet, and the distribution of wild and early hatchery fry overlapped for about three weeks. Our results demonstrate that the timing of release of hatchery fry may affect interactions with wild fry.
Resumo:
The on-offshore distributions of tuna larvae in near-reef waters of the Coral Sea, near Lizard Island (14°30ʹS, 145°27ʹE), Australia, were investigated during four cruises from November 1984 to February 1985 to test the hypothesis that larvae of these oceanic fishes are found in highest abundance near coral reefs. Oblique bongo net tows were made in five on-offshore blocks in the Coral Sea, ranging from 0–18.5 km offshore of the outer reefs of the Great Barrier Reef, as well as inside the Great Barrier Reef Lagoon. The smallest individuals (<3.2 mm SL) of the genus Thunnus could not be identified to species, and are referred to as Thunnus spp. We found species-specific distributional patterns. Thunnus spp. and T. alalunga (albacore) larvae were most abundant (up to 68 larvae/100 m2) in near-reef (0–5.5 km offshore) waters, whereas Katsuwonus pelamis (skipjack tuna) larvae increased in abundance in the offshore direction (up to 228 larvae/100 m2, 11.1–18.5 km offshore). Larvae of T. albacares (yellowfin tuna) and Euthynnus affinis (kawakawa) were relatively rare throughout the study region, and the patterns of their distributions were inconclusive. Few larvae of any tuna species were found in the lagoon. Size-frequency distributions revealed a greater proportion of small larvae inshore compared to offshore for K. pelamis and T. albacares. The absence of significant differences in size-frequency distributions for other species and during the other cruises was most likely due to the low numbers of larvae. Larval distributions probably resulted from a combination of patterns of spawning and vertical distribution, combined with wind-driven onshore advection and downwelling on the seaward side of the outer reefs.
Resumo:
Cape Cod Bay (Massachusetts) is the only known winter and early spring feeding area for concentrations of the endangered North Atlantic right whale (Eubalaena glacialis) population. During January–May, 1998–2002, 167 aerial surveys were conducted (66,466 km of total survey effort), providing a complete representation of the spatiotemporal distribution of right whales in the bay during winter and spring. A total of 1553 right whales were sighted; some of these sightings were multiple sightings of the same individuals. Right whale distribution and relative abundance patterns were quantified as sightings per unit of effort (SPUE) and partitioned into 103 23-km2 cells and 12 2-week periods. Significant interannual variations in mean SPUE and timing of SPUE maxima were likely due to physically forced changes in available food resources. The area of greatest SPUE expanded and contracted during the season but its center remained in the eastern bay. Most cells with SPUE>0 were inside the federal critical habitat (CH) and this finding gave evidence of the need for management measures within CH boundaries to reduce anthropogenic mortality from vessel strikes and entanglement. There was significant within-season SPUE variability: low in December−January, increasing to a maximum in late February−early April, and declining to zero in May; and these results provide support for management measures from 1 January
Resumo:
The red deepsea crab (Chaceon quinquedens (Smith, 1879)) has supported a commercial fishery off the coast of New England since the 1970s (Wigley et al., 1975) and has had annual harvests from 400 metric tons (t) (1996) to 4000 t (2001) (NEFMC, 2002). In 2002, a fishery management plan for the northeast fishery on the Atlantic coast was implemented and total allowable catch was reduced to approximately 2500 t (NEFMC, 2002). Although there are management plans for the golden crab (C. fenneri) and the red deep sea crab for Atlantic coast regions, there is no fishery management plan for red deepsea crabs in the Gulf of Mexico. Successful management for sustainable harvests should be based on a knowledge of the life history of the species, but C. quinquedens has been a difficult species for which to obtain life history and abundance information because of its deep distribution.
Resumo:
Six years of bottom-trawl survey data, including over 6000 trawls covering over 200 km2 of bottom area throughout Alaska’s subarctic marine waters, were analyzed for patterns in species richness, diversity, density, and distribution of skates. The Bering Sea continental shelf and slope, Aleutian Islands, and Gulf of Alaska regions were stratified by geographic subregion and depth. Species richness and relative density of skates increased with depth to the shelf break in all regions. The Bering Sea shelf was dominated by the Alaska skate (Bathyraja parmifera), but species richness and diversity were low. On the Bering Sea slope, richness and diversity were higher in the shallow stratum, and relative density appeared higher in subregions dominated by canyons. In the Aleutian Islands and Gulf of Alaska, species richness and relative density were generally highest in the deepest depth strata. The data and distribution maps presented here are based on species-level data collected throughout the marine waters of Alaska, and this article represents the most comprehensive summary of the skate fauna of the region published to date.
Resumo:
We examined the diel ver-tical distribution, concentration, and community structure of ichthyoplank-ton from a single station 69 km off the central Oregon coast in the northeast Pacific Ocean. The 74 depth-stratified samples yielded 1571 fish larvae from 20 taxa, representing 11 families, and 128 fish eggs from 11 taxa within nine families. Dominant larval taxa were Sebastes spp. (rockfishes), Stenobra-chius leucopsarus (northern lampfish), Tarletonbeania crenularis (blue lan-ternfish), and Lyopsetta exilis (slender sole), and the dominant egg taxa were Sardinops sagax (Pacific sardine), Icichthys lockingtoni (medusafish), and Chauliodus macouni (Pacific viperfish). Larval concentrations generally increased from the surface to 50 m, then decreased with depth. Larval concentrations were higher at night than during the day, and there was evidence of larval diel vertical migration. Depth stratum was the most important factor explaining variability in larval and egg concentrations.
Resumo:
Leatherback turtles (Dermochelys coriacea) are regularly seen off the U.S. West Coast, where they forage on jellyfish (Scyphomedusae) during summer and fall. Aerial line-transect surveys were conducted in neritic waters (<92 m depth) off central and northern California during 1990−2003, providing the first foraging population estimates for Pacific leatherback turtles. Males and females of about 1.1 to 2.1 m length were observed. Estimated abundance was linked to the Northern Oscillation Index and ranged from 12 (coefficient of variation [CV] =0.75) in 1995 to 379 (CV= 0.23) in 1990, averaging 178 (CV= 0.15). Greatest densities were found off central California, where oceanographic retention areas or upwelling shadows created favorable habitat for leatherback turtle prey. Results from independent telemetry studies have linked leatherback turtles off the U.S. West Coast to one of the two largest remaining Pacific breeding populations, at Jamursba Medi, Indonesia. Nearshore waters off California thus represent an important foraging region for the critically endangered Pacific leatherback turtle.
Resumo:
The eastern Steller sea lion (Eumetopias jubatus) population comprises animals that breed along the west coast of North America between California and southeastern Alaska. There are currently 13 major rookeries (>50 pups): five in southeastern Alaska, three in British Columbia, two in Oregon, and three in California. Overall abundance has increased at an average annual rate of 3.1% since the 1970s. These increases can largely be attributed to population recovery from predator-control kills and commercial harvests, and abundance is now probably as high as it has been in the last century. The number of rookeries has remained fairly constant (n=11 to 13) over the past 80 years, but there has been a northward shift in distribution of both rookeries and numbers of animals. Based on the number of pups counted in a population-wide survey in 2002, total pup production was estimated to be about 11,000 (82% in southeastern Alaska and British Columbia), representing a total population size as approximately 46,000−58,000 animal