982 resultados para CO-ADSORPTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co-management is a system or a process in which responsibility and authority for the management of common resources is shared between the state, local users of the resources as well as other stakeholders, and where they have the legal authority to administer the resource jointly. Co-management has received increasing attention in recent years as a potential strategy for managing fisheries. This paper presents and discusses results of a survey undertaken in the Kenyan part of Lake Victoria to assess the conditions - behaviour, attitude and characteristics of resource users, as well as community institutions - that can support co-management. It analyses the results of this survey with respect to a series of parameters, identified by Pinkerton (1989), as necessary preconditions for the successful inclusion of communities involvement in resource management. The survey was implemented through a two-stage stratified random sampling technique based on district and beach size strata. A total of 405 fishers, drawn from 25 fish landing beaches, were interviewed using a structured questionnaire. The paper concludes that while Kenya's lake Victoria fishery would appear to qualify for a number of these preconditions, it would appear that it fails to qualify in others. Preconditions in this latter category include the definition of boundaries in fishing grounds, community members' rights to the resource, delegation and legislation of local responsibility and authority. Additional work is required to further elaborate and understand these shortcomings

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The organometallic chemistry of the hexagonally close-packed Ru(001) surface has been studied using electron energy loss spectroscopy and thermal desorption mass spectrometry. The molecules that have been studied are acetylene, formamide and ammonia. The chemistry of acetylene and formamide has also been investigated in the presence of coadsorbed hydrogen and oxygen adatoms.

Acetylene is adsorbed molecularly on Ru(001) below approximately 230 K, with rehybridization of the molecule to nearly sp^3 occurring. The principal decomposition products at higher temperatures are ethylidyne (CCH_3) and acetylide (CCH) between 230 and 350 K, and methylidyne (CH) and surface carbon at higher temperatures. Some methylidyne is stable to approximately 700 K. The preadsorption of hydrogen does not alter the decomposition products of acetylene, but reduces the saturation coverage and also leads to the formation of a small amount of ethylene (via an η^2-CHCH_2 species) which desorbs molecularly near 175 K. Preadsorbed oxygen also reduces the saturation coverage of acetylene but has virtually no effect on the nature of the molecularly chemisorbed acetylene. It does, however, lead to the formation of an sp^2-hybridized vinylidene (CCH_2) species in the decomposition of acetylene, in addition to the decomposition products that are formed on the clean surface. There is no molecular desorption of chemisorbed acetylene from clean Ru(001), hydrogen-presaturated Ru(001), or oxygen-presaturated Ru(001).

The adsorption and decomposition of formamide has been studied on clean Ru(001), hydrogen-presaturated Ru(001), and Ru(001)-p(1x2)-O (oxygen adatom coverage = 0.5). On clean Ru(001), the adsorption of low coverages of formamide at 80 K results in CH bond cleavage and rehybridization of the carbonyl double bond to produce an η^2 (C,O)-NH_2CO species. This species is stable to approximately 250 K at which point it decomposes to yield a mixture of coadsorbed carbon monoxide, ammonia, an NH species and hydrogen adatoms. The decomposition of NH to hydrogen and nitrogen adatoms occurs between 350 and 400 K, and the thermal desorption products are NH_3 (-315 K), H_2 (-420 K), CO (-480 K) and N_2 (-770 K). At higher formamide coverages, some formamide is adsorbed molecularly at 80 K, leading both to molecular desorption and to the formation of a new surface intermediate between 300 and 375 K that is identified tentatively as η^1(N)-NCHO. On Ru(001)- p(1x2)-O and hydrogen-presaturated Ru(001), formamide adsorbs molecularly at 80 K in an η^1(O)- NH_2CHO configuration. On the oxygen-precovered surface, the molecularly adsorbed formamide undergoes competing desorption and decomposition, resulting in the formation of an η^2(N,O)-NHCHO species (analogous to a bidentate formate) at approximately 265 K. This species decomposes near 420 K with the evolution of CO and H_2 into the gas phase. On the hydrogen precovered surface, the Η^1(O)-NH_2CHO converts below 200 K to η^2(C,O)-NH_2CHO and η^2(C,O)-NH^2CO, with some molecular desorption occurring also at high coverage. The η^2(C,O)-bonded species decompose in a manner similar to the decomposition of η^2(C,O)-NH_2CO on the clean surface, although the formation of ammonia is not detected.

Ammonia adsorbs reversibly on Ru(001) at 80 K, with negligible dissociation occurring as the surface is annealed The EEL spectra of ammonia on Ru(001) are very similar to those of ammonia on other metal surfaces. Off-specular EEL spectra of chemisorbed ammonia allow the v(Ru-NH_3) and ρ(NH_3) vibrational loss features to be resolved near 340 and 625 cm^(-1), respectively. The intense δ_g (NH_3) loss feature shifts downward in frequency with increasing ammonia coverage, from approximately 1160 cm^(-1) in the low coverage limit to 1070 cm^(-1) at saturation. In coordination compounds of ammonia, the frequency of this mode shifts downward with decreasing charge on the metal atom, and its downshift on Ru(001) can be correlated with the large work function decrease that the surface has previously been shown to undergo when ammonia is adsorbed. The EELS data are consistent with ammonia adsorption in on-top sites. Second-layer and multilayer ammonia on Ru(001) have also been characterized vibrationally, and the results are similar to those obtained for other metal surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exhaust gases from industrial furnaces contain a huge amount of heat and chemical enthalpy. However, it is hard to recover this energy since exhaust gases invariably contain combustible components such as carbon monoxide (CC). If the CO is unexpectedly ignited during the heat recovery process, deflagration or even detonation could occur, with serious consequences such as complete destruction of the equipment. In order to safely utilize the heat energy contained in exhaust gas, danger of its explosion must be fully avoided. The mechanism of gas deflagration and its prevention must therefore be studied. In this paper, we describe a numerical and experimental investigation of the deflagration process in a semi-opened tube. The results show that, upon ignition, a low-pressure wave initially spreads within the tube and then deflagration begins. For the purpose of preventing deflagration, an appropriate amount of nitrogen was injected into the tube at a fixed position. Both simulation and experimental results have shown that the injection of inert gas can successfully interrupt the deflagration process. The peak value of the deflagration pressure can thereby be reduced by around 50%. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of HCl on CO and NO emissions was experimentally investigated in an entrained flow reactor (EFR) and an internally circulating fluidized bed (ICFB). The results in EFR show the addition of HCl inhibits CO oxidation and NO formation at 1073 K and 1123 K. At the lower temperature (1073 K) the inhibition of HCl becomes more obvious. In ICFB, chlorine-containing plastic (PVC) was added to increase the concentration of HCl during the combustion of coal or coke. Results show that HCl is likely to enhance the reduction of NO and N2O. HCl greatly increases CO and CH4 emission in the flue gas. A detailed mechanism of CO/NO/HCl/SO2 system was used to model the effect of HCl in combustion. The results indicate that HCl not only promotes the recombination of radicals O, H, and OH, but also accelerates the chemical equilibration of radicals. The influence of HCl on the radicals mainly occurs at 800-1200 K. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulatory action to protect California’s coastal water quality from degradation by copper from recreational boats’ antifouling paints interacts with efforts to prevent transport of invasive, hull-fouling species. A copper regulatory program is in place for a major yacht basin in northern San Diego Bay and in process for other major, California boat basins. “Companion” fouling control strategies are used with copper-based antifouling paints, as some invasive species have developed resistance to the copper biocide. Such strategies are critical for boats with less toxic or nontoxic hull coatings. Boat traffic along over 3,000 miles of coastline in California and Baja California increases invasive species transport risks. For example, 80% of boats in Baja California marinas are from the United States, especially California. Policy makers, boating businesses and boat owners need information on costs and supply-side capacity for effective fouling control measures to co-manage water quality and invasive species concerns. (PDF contains 3 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anionic tripod ligand NaLoMe (L_(oMe) - = [(η^5-C_5H_5)Co{P(O)(OCH_3)_2}_3]^-) reacts with RuO_4 in a biphasic reaction mixture of 1% H_2SO_4 and CCI_4 to afford [(L_(oMe) (HO)Ru^(IV) (µ-O)_2Ru ^(IV)(OH)(L_(oMe)] (1), which is treated with aqueous CF_3S0_3H to generate [(L_(oMe)(H_2O)Ru^(IV) (µ-O)_2R^(IV) (OH_2)(L_(oMe)][CF_3SO_3]_2 ([H_21][CF_3SO_3]_2). Addition of iodosobenzene to an acetonitrile solution of this salt yields [(L_(oMe)(O)Ru^v(µ-0)2Ru^v-(O)(_(LoMe)] (2). The dimer 1 can be reduced chemically or electrochemically to the Ru^(III)- Ru^(III) dimers [(L_(oMe)(H_20)Ru^(III) (µ-OH)_2Ru^(III) (OH_2)(L_(oMe)) ]^2+ and [(L_(oMe)) ^(III) (µ-0Hh(µ-0H2)Ru^(III) (L_(oMe)]^2+ which interconvert in aqueous media. Two electron processes dominate both the bulk chemistry and the electrochemistry of 1. Among these processes are the quasi-reversible Ru^(IV) - Ru^(IV)/Ru^(III)- Ru^(III) and Ru^(III)- Ru^(III)/ Ru^(II)- Ru^(II) reductions and a largely irreversible Ru^(V) - Ru^(V)/ Ru^(IV) - Ru^(IV)/oxidation. The dioxo dimer 2 oxidizes alcohols and aldehydes in organic media to afford 1 and the corresponding aldehydes and acids. Analogously, the Ru^(V) - Ru^(V)/ Ru^(IV)- Ru^(IV) redox wave mediates the electrooxidation of alcohols and aldehydes in aqueous buffer. In this system, substrates can be oxidized completely to CO_2. The kinetic behavior of these oxidations was examined by UV-vis and chronoamperometry, respectively, and the chemistry is typical of metal-oxo complexes, indicating that electronic coupling between two metal centers does not dramatically affect the metal-oxo chemistry. Dimer [H_21]^(2+) also reacts with alcohols, aldehydes, and triphenylphosphine in CH_3CN to afford Ru^(III)- Ru^(III) products including [(L_(oMe))CH_3CN) Ru^(III) (µ-OH)_2 Ru^(III) (NCCH_3)( L_(oMe))][CF_3SO_3]2 (characterized by X-ray crystallography) and the corresponding organic products. Reaction of 1 with formaldehyde in aqueous buffer quantitatively affords the triply bridged dimer [(L_(oMe)Ru^(III) (µ-OH)2- (µ-HCOO) Ru^(III) (L_(oMe)][CF_3SO_3] (characterized by X-ray crystallography). This reaction evidently proceeds by two parallel inner-sphere pathways, one of which is autocatalytic. Neither pathway exhibits a primary isotope effect suggesting the rate determining process could be the formation of an intermediate, perhaps a Ru^(IV) - Ru^(IV) formate adduct. The Ru^(III)- Ru^(III)formate adduct is easily oxidized to the Ru^(IV) - Ru^(IV) analog [(L_(oMe)Ru^(IV)(µ-OH)_2-(µ-HCOO) Ru^(IV) (L_(oMe)][CF_3SO_3], which, after isolation, reacts slowly with aqueous formaldehyde to generate free formate and the Ru^(III)- Ru^(III) formate adduct. These dimers function as catalysts for the electrooxidation of formaldehyde at low anodic potentials (+0.0 V versus SCE in aqueous buffer, pH 8.5) and enhance the activity of Nafion treated palladium/carbon heterogeneous fuel cell catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within natural resource management, there is increasing criticism of the traditional model of top-down management as a method of governance, as researchers and managers alike have recognized that resources can frequently be better managed when stakeholders are directly involved in management. As a result, in recent years the concept of co-management of natural resources, in which management responsibilities are shared between the government and stakeholders, has become increasingly popular, both in the academic literature and in practice. However, while co-management has significant potential as a successful management tool, the issue of equity in co-management has rarely been addressed. It is necessary to understand the differential impacts on stakeholders of co-management processes and the degree to which diverse stakeholders are represented within co-management. Understanding the interests of various stakeholders can be a way to more effectively address the distributional and social impacts of coastal policies, which can in turn increase compliance with management measures and lead to more sustainable resource management regimes. This research seeks to take a closer look at the concepts of co-management and participation through a number of case studies of marine protected areas (MPAs) in the Caribbean. (PDF contains 4 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The signal recognition particle (SRP) and its receptor (SR) are universally conserved protein machineries that deliver nascent peptides to their proper destination. The SRP RNA is a universally conserved and essential component of SRP, which serves as the “catalyst” of the protein targeting cycle. The SRP RNA accelerates SRP-SR complex formation at the beginning of the protein targeting reaction, and triggers GTP hydrolysis and SRP-SR complex disassembly at the end. Here we combined biochemical and biophysical approaches to investigate the molecular mechanism of the functions of the SRP RNA. We found that two functional ends in the SRP RNA mediate distinct functions. The tetraloop end facilitates initial assembly of SRP and SR by mediating an electrostatic interaction with the Lys399 receptor, which ensures efficient and accurate substrate targeting. At the later stage of the SRP cycle, the SRP-SR complex relocalizes ~ 100 Angstrom to the 5’,3’-distal end of the RNA, a conformation crucial for GTPase activation and cargo handover. These results, combined with recent structural work, elucidate the functions of the SRP RNA during the protein targeting reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interactions of N2, formic acid and acetone on the Ru(001) surface are studied using thermal desorption mass spectrometry (TDMS), electron energy loss spectroscopy (EELS), and computer modeling.

Low energy electron diffraction (LEED), EELS and TDMS were used to study chemisorption of N2 on Ru(001). Adsorption at 75 K produces two desorption states. Adsorption at 95 K fills only the higher energy desorption state and produces a (√3 x √3)R30° LEED pattern. EEL spectra indicate both desorption states are populated by N2 molecules bonded "on-top" of Ru atoms.

Monte Carlo simulation results are presented on Ru(001) using a kinetic lattice gas model with precursor mediated adsorption, desorption and migration. The model gives good agreement with experimental data. The island growth rate was computed using the same model and is well fit by R(t)m - R(t0)m = At, with m approximately 8. The island size was determined from the width of the superlattice diffraction feature.

The techniques, algorithms and computer programs used for simulations are documented. Coordinate schemes for indexing sites on a 2-D hexagonal lattice, programs for simulation of adsorption and desorption, techniques for analysis of ordering, and computer graphics routines are discussed.

The adsorption of formic acid on Ru(001) has been studied by EELS and TDMS. Large exposures produce a molecular multilayer species. A monodentate formate, bidentate formate, and a hydroxyl species are stable intermediates in formic acid decomposition. The monodentate formate species is converted to the bidentate species by heating. Formic acid decomposition products are CO2, CO, H2, H2O and oxygen adatoms. The ratio of desorbed CO with respect to CO2 increases both with slower heating rates and with lower coverages.

The existence of two different forms of adsorbed acetone, side-on, bonded through the oxygen and acyl carbon, and end-on, bonded through the oxygen, have been verified by EELS. On Pt(111), only the end-on species is observed. On dean Ru(001) and p(2 x 2)O precovered Ru(001), both forms coexist. The side-on species is dominant on clean Ru(001), while O stabilizes the end-on form. The end-on form desorbs molecularly. Bonding geometry stability is explained by surface Lewis acidity and by comparison to organometallic coordination complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption of aqueous Pb(II) and Cu(II) on α-quartz was studied as a function of time, system surface area, and chemical speciation. Experimental systems contained sodium as a major cation, hydroxide, carbonate, and chloride as major anions, and covered the pH range 4 to 8. In some cases citrate and EDTA were added as representative organic complexing agents. The adsorption equilibria were reached quickly, regardless of the system surface area. The positions of the adsorption equilibria were found to be strongly dependent on pH, ionic strength and concentration of citrate and EDTA. The addition of these non-adsorbing ligands resulted in a competition between chelation and adsorption. The experimental work also included the examination of the adsorption behavior of the doubly charged major cations Ca(II) and Mg(II) as a function of pH.

The theoretical description of the experimental systems was obtained by means of chemical equilibrium-plus-adsorption computations using two adsorption models: one mainly electrostatic (the James-Healy Model), and the other mainly chemical (the Ion Exchange-Surface Complex Formation Model). Comparisons were made between these two models.

The main difficulty in the theoretical predictions of the adsorption behavior of Cu(II) was the lack of the reliable data for the second hydrolysis constant(*β_2) The choice of the constant was made on the basis of potentiometric titratlons of Cu^(2+)

The experimental data obtained and the resulting theoretical observations were applied in models of the chemical behavior of trace metals in fresh oxic waters, with emphasis on Pb(II) and Cu(II).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current measures of global gene expression analyses, such as correlation and mutual information-based approaches, largely depend on the degree of association between mRNA levels and to a lesser extent on variability. I develop and implement a new approach, called the Ratiometric method, which is based on the coefficient of variation of the expression ratio of two genes, relying more on variation than previous methods. The advantage of such modus operandi is the ability to detect possible gene pair interactions regardless of the degree of expression dispersion across the sample group. Gene pairs with low expression dispersion, i.e., their absolute expressions remain constant across the sample group, are systematically missed by correlation and mutual information analyses. The superiority of the Ratiometric method in finding these gene pair interactions is demonstrated in a data set of RNA-seq B-cell samples from the 1000 Genomes Project Consortium. The Ratiometric method renders a more comprehensive recovery of KEGG pathways and GO-terms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Por ser um material de baixo custo e apresentar propriedades ligantes, a macroalga marinha Sargassum filipendula vem sendo utilizada como material biossorvente no processo de biossorção de metais. No presente trabalho a alga marrom foi utilizada no estudo cinético e de equilíbrio dos íons de tório e urânio individuais e os resultados comparados à biossorção desses metais em sistema binário. Os testes foram realizados nas concentrações 1 e 10 mg/L e pH= 1,0 e 4,0 na temperatura de 25 1C. A melhor condição para biossorção de tório foi encontrada para 1 mg/L e pH= 1,0, enquanto que para urânio foi em 1 mg/L e pH= 4,0. O estudo cinético de biossorção de tório mostrou que o modelo de segunda ordem descreve melhor os dados experimentais em 1 mg/L (R2= 0,9987) e 10 mg/L (R2= 0,9919) em pH= 1,0 e 1 mg/L (R2= 0,9976) em pH= 4,0, enquanto em 10 mg/L (R2= 0,9787) pH= 4,0 a curva encontrada representou uma cinética de primeira ordem. Para a cinética de urânio os dois modelos se adequaram bem aos dados em ambas as condições experimentais. O estudo de equilíbrio mostrou um perfil crescente de captação de tório, com uma remoção de 96% e 54% do metal em pH= 1,0 e 4,0, respectivamente, a partir da Co= 1 mg/L. A melhor eficiência de captação dos íons de urânio foi de 33% para Co= 100 mg/L em pH= 1,0 e 71% para Co= 1 mg/L em pH= 4,0. Os dados experimentais da isoterma de tório mostraram-se mais adequados ao modelo de Freundlich para pH= 1,0, enquanto que para o pH= 4,0 esses foram melhor representados pelo modelo de Langmuir, com valores de coeficiente de determinação superiores. Em relação à isoterma do urânio, o modelo de Freundlich representou bem os dados experimentais. Os parâmetros de equilíbrio calculados a partir do modelo de Langmuir (kL, qmax ) e Freundlich (kF, n) indicaram uma maior afinidade da biomassa pelos íons de tório em ambas as condições experimentais. O estudo de equilíbrio do sistema binário mostrou que a biossorção dos íons de tório não é afetada pela presença do urânio em solução. Por outro lado, a sorção do urânio foi fortemente afetada pela coexistência com os íons de tório.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As indústrias consomem volumes elevados de água e outras substâncias químicas na síntese dos seus produtos e geram grande quantidade de rejeitos. Entre os mais importantes poluentes encontrados nos efluentes dessas indústrias estão os corantes sintéticos que representam um problema, pois não são facilmente destruídos por tratamentos convencionais. A fotocatálise heterogênea tem sido considerada como uma alternativa efetiva no tratamento de efluentes contendo esses corantes. Neste trabalho, estudou-se a cinética de descoloração e o grau de mineralização dos corantes sintéticos reativos Yellow 145, Black 5, Red 4 e Blue 21 através da fotocatálise utilizando ZnO puro e impregnado com íons Fe2+ e Co2+. Testes preliminares foram realizados para otimizar a concentração dos corantes e a massa mínima de catalisador a ser utilizado nos experimentos fotocatalíticos. Além da fotocatálise, experimentos individuais de fotólise e adsorção também foram realizados, porém se mostraram poucos eficientes. Através da espectrofotometria UV-Vis, verificou-se o total descoramento individual dos corantes em aproximadamente 30 minutos de irradiação com ZnO. O grau de mineralização de cada corante foi determinado através de análise de carbono orgânico total (COT), atingindo-se cerca de 70 a 80% de mineralização após 240 minutos de tratamento fotocatalítico. Foram comparadas, ainda, as eficiências de cada fotocatalisador ZnO, Fe/ZnO e Co/ZnO na mineralização de uma solução contendo a mistura dos quatro corantes já mencionados após 240 minutos de reação. A eficiência na mineralização da mistura dos corantes seguiu a seguinte ordem: Co/ZnO (32%), ZnO (78%) e Fe/ZnO (87%). A reação de degradação fotocatalítica do corante Black 5 seguiu uma cinética de primeira ordem, enquanto que os corantes Yellow 145, Red 4 e Blue 21 seguiram uma cinética de ordem zero.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combustion of CS₂ and O₂ in a free burning laminar mixing layer at low pressure was investigated using emission spectroscopy. The temperature fields, CO vibrational distributions, and CO concentrations were measured. The data indicate that vibration ally excited CO was produced in the mixing layer flames, but that there were no vibrational population inversions. In comparison with the CS₂/O₂ premixed flames, the mixing layer flames favored greater production of COS and CO₂. Computer modeling was used to study the mechanisms responsible for the production of COS and CO₂, and to study how the branching chain mechanism responsible for production of CO affects the behavior of the mixing layer flame. The influences of the gas additives, N₂O, COS, and CNBr, were also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of composition on the structure and on the electric and magnetic properties of amorphous Pd-Mn-P and Pd-Co-P prepared by rapid quenching techniques were investigated in terms of (1) the 3d band filling of the first transition metal group, (2) the phosphorus concentration effect which acts as an electron donor and (3) the transition metal concentration.

The structure is essentially characterized by a set of polyhedra subunits essentially inverse to the packing of hard spheres in real space. Examination of computer generated distribution functions using Monte Carlo random statistical distribution of these polyhedra entities demonstrated tile reproducibility of the experimentally calculated atomic distribution function. As a result, several possible "structural parameters" are proposed such as: the number of nearest neighbors, the metal-to-metal distance, the degree of short-range order and the affinity between metal-metal and metal-metalloid. It is shown that the degree of disorder increases from Ni to Mn. Similar behavior is observed with increase in the phosphorus concentration.

The magnetic properties of Pd-Co-P alloys show that they are ferromagnetic with a Curie temperature between 272 and 399°K as the cobalt concentration increases from 15 to 50 at.%. Below 20 at.% Co the short-range exchange interactions which produce the ferromagnetism are unable to establish a long-range magnetic order and a peak in the magnetization shows up at the lowest temperature range . The electric resistivity measurements were performed from liquid helium temperatures up to the vicinity of the melting point (900°K). The thermomagnetic analysis was carried out under an applied field of 6.0 kOe. The electrical resistivity of Pd-Co-P shows the coexistence of a Kondo-like minimum with ferromagnetism. The minimum becomes less important as the transition metal concentration increases and the coefficients of ℓn T and T^2 become smaller and strongly temperature dependent. The negative magnetoresistivity is a strong indication of the existence of localized moment.

The temperature coefficient of resistivity which is positive for Pd- Fe-P, Pd-Ni-P, and Pd-Co-P becomes negative for Pd-Mn-P. It is possible to account for the negative temperature dependence by the localized spin fluctuation model and the high density of states at the Fermi energy which becomes maximum between Mn and Cr. The magnetization curves for Pd-Mn-P are typical of those resulting from the interplay of different exchange forces. The established relationship between susceptibility and resistivity confirms the localized spin fluctuation model. The magnetoresistivity of Pd-Mn-P could be interpreted in tenns of a short-range magnetic ordering that could arise from the Rudennan-Kittel type interactions.