967 resultados para CLOUD-POINT CURVES
Resumo:
We investigate the interplay between magnetic and structural dynamics in ferromagnetic atomic point contacts. In particular, we look at the effect of the atomic relaxation on the energy barrier for magnetic domain wall migration and, reversely, at the effect of the magnetic state on the mechanical forces and structural relaxation. We observe changes of the barrier height due to the atomic relaxation up to 200%, suggesting a very strong coupling between the structural and the magnetic degrees of freedom. The reverse interplay is weak; i.e., the magnetic state has little effect on the structural relaxation at equilibrium or under nonequilibrium, current-carrying conditions.
Resumo:
The Zipf curves of log of frequency against log of rank for a large English corpus of 500 million word tokens, 689,000 word types and for a large Spanish corpus of 16 million word tokens, 139,000 word types are shown to have the usual slope close to –1 for rank less than 5,000, but then for a higher rank they turn to give a slope close to –2. This is apparently mainly due to foreign words and place names. Other Zipf curves for highlyinflected Indo-European languages, Irish and ancient Latin, are also given. Because of the larger number of word types per lemma, they remain flatter than the English curve maintaining a slope of –1 until turning points of about ranks 30,000 for Irish and 10,000 for Latin. A formula which calculates the number of tokens given the number of types is derived in terms of the rank at the turning point, 5,000 for both English and Spanish, 30,000 for Irish and 10,000 for Latin.
Resumo:
Dense deployment of wireless local area network (WLAN) access points (APs) is an important part of the next generation Wi-Fi and standardization (802.11ax) efforts are underway. Increasing demand for WLAN connectivity motivates such dense deployments, especially in geographical areas with large numbers of users, such as stadiums, large enterprises, multi-tenant buildings, and urban cities. Although densification of WLAN APs guarantees coverage, it is susceptible to increased interference and uncoordinated association of stations (STAs) to APs, which degrade network throughput. Therefore, to improve network throughput, algorithms are proposed in this thesis to optimally coordinate AP associations in the presence of interference. In essence, coordination of APs in dense WLANs (DWLANs) is achieved through coordination of STAs' associations with APs. While existing approaches suggest tuning of APs' beacon powers or using transmit power control (TPC) for association control, here, the signal-to-interference-plus-noise ratio (SINRs) of STAs and the clear channel assessment (CCA) threshold of the 802.11 MAC protocol are employed. The proposed algorithms in this thesis enhance throughput and minimize coverage holes inherent in cell breathing and TPC techniques by not altering the transmit powers of APs, which determine cell coverage. Besides uncoordinated AP associations, unnecessary frequent transmission deferment is envisaged as another problem in DWLANs due to the clear channel assessment aspect of the carrier sensing multiple access collision avoidance (CSMA/CA) scheme in 802.11 standards and the short spatial reuse distance between co-channel APs. To address this problem in addition to AP association coordination, an algorithm is proposed for CCA threshold adjustment in each AP cell, such that CCA threshold used in one cell mitigates transmission deferment in neighboring cells. Performance evaluation reveals that the proposed association optimization algorithms achieve significant gain in throughput when compared with the default strongest signal first (SSF) association scheme in the current 802.11 standard. Also, further gain in throughput is observed when the CCA threshold adjustment is combined with the optimized association. Results show that when STA-AP association is optimized and CCA threshold is adjusted in each cell, throughput improves. Finally, transmission delay and the number of packet re-transmissions due to collision and contention significantly decrease.
An exploratory non-LTE model atmosphere analysis of B-type supergiants in the Small Magellanic Cloud
Resumo:
A preliminary differential non-LTE model atmosphere analysis of moderate resolution (R ~ 5 000) and signal-to-noise ratio spectra of 48 Small Magellanic Cloud B-type supergiants is presented. Standard techniques are adopted, viz. plane-parallel geometry and radiative and hydrostatic equilibrium. Spectroscopic atmospheric parameters (T_eff, log g and v_turb), luminosities and chemical abundances (He, C, N, O, Mg and Si) are estimated. These are compared with those deduced for a comparable sample of Galactic supergiants. The SMC targets appear to have similar atmospheric parameters, luminosities and helium abundances to the Galactic sample. Their magnesium and silicon underabundances are compatible with those found for main sequence SMC objects and there is no evidence for any large variation in their oxygen abundances. By contrast both their carbon and nitrogen lines strengths are inconsistent with single abundances, while their nitrogen to carbon abundance ratios appear to vary by at least as much and probably more than that found in the Galactic sample.
Resumo:
Edge Cloud 2 (EC2) is a molecular cloud, about 35 pc in size, with one of the largest galactocentric distances known to exist in the Milky Way. We present observations of a peak CO emission region in the cloud and use these to determine its physical characteristics. We calculate a gas temperature of 20 K and a density of n(H2)~10^4 cm-3. Based on our CO maps, we estimate the mass of EC2 at around 10^4 Msolar and continuum observations suggest a dust-to-gas mass ratio as low as 0.001. Chemical models have been developed to reproduce the abundances in EC2, and they indicate that heavy element abundances may be reduced by a factor of 5 relative to the solar neighborhood (similar to dwarf irregular galaxies and damped Lya systems), very low extinction (A_V <4 mag) due to a very low dust-to-gas mass ratio, an enhanced cosmic-ray ionization rate, and a higher UV field compared to local interstellar values. The reduced abundances may be attributed to the low level of star formation in this region and are probably also related to the continuing infall of primordial (or low-metallicity) halo gas since the Milky Way formed. Finally, we note that shocks from the old supernova remnant GSH 138-01-94 may have determined the morphology and dynamics of EC2.