977 resultados para CIMENTOS DENTÁRIOS
Resumo:
A cárie dentária é uma doença infeciosa, transmissível e multifatorial e é também a doença mais prevalente na cavidade oral das crianças. A grande maioria dos medicamentos desenvolvidos para a Pediatria tem na sua composição algum tipo de açúcar, de forma a tornar a sua ingestão mais agradável, o que lhes confere um potencial cariogénico agravado nesta faixa etária. A sacarose continua a ser o açúcar mais utilizado por ser de baixo custo, ser antioxidante e conferir viscosidade ao medicamento. O potencial cariogénico dos medicamentos está relacionado com vários fatores como a presença de sacarose, o seu pH endógeno, a viscosidade, a frequência de ingestão, o momento de ingestão, a capacidade de causar xerostomia e os hábitos de higiene oral individuais. Por parte dos Médicos Dentistas e Pediatras é necessário aconselhar os responsáveis das crianças dos riscos e cuidados a ter durante a toma dos medicamentos incluindo exames dentários regulares. Por parte da Indústria Farmacêutica é necessário o desenvolvimento de formulações livres de açúcar ou com edulcorantes não cariogénicos. O objetivo deste trabalho foi esclarecer a relação entre a cárie dentária e os medicamentos pediátricos, enfatizando a necessidade do planeamento de ações no sentido de prevenir o desenvolvimento da doença. Para tal foi realizada uma revisão sistemática da literatura, através de pesquisa bibliográfica nos bancos de dados Medline, Pubmed, B-On e Scielo e Science Direct.
Resumo:
As fraturas que ocorrem no osso osteoporótico são por definição estrita fraturas patológicas. Podem estar relacionadas com quedas da própria altura ou de traumatismos de baixa energia cinética e envolvem habitualmente a anca, o punho, a coluna vertebral e o ombro. As fraturas osteoporóticas a que se associa a sarcopenia, representam um sério problema de saúde pública em todo o mundo, com uma proporção epidémica e um impacto devastador na morbilidade e mortalidade dos pacientes, assim como nos custos socioeconómicos. Apesar dos avanços registados na prevenção e no tratamento farmacológico da osteoporose bem como no tratamento cirúrgico das fraturas ósseas, continuam a ser desenvolvidos novos biomateriais metálicos e substitutos sintéticos do osso com a intenção de se conseguir alcançar melhores resultados clínicos. Dentro deste contexto incluem-se os cimentos hidráulicos, os parafusos expansivos, os parafusos dinâmicos, as malhas metálicas de titânio, as placas bloqueadas, entre outros, em conjugação com técnicas minimamente invasivas e com diferentes estratégias cirúrgicas. O objetivo central deste trabalho assenta nas modalidades cirúrgicas mais usadas para o tratamento das fraturas em osso osteoporótico, com especial destaque para as fraturas da coluna vertebral.
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
Protein and caloric malnutrition has been considered one of the most concerned endemic diseases in Brazil and in the world. It has been known that depletion or reduction of proteins as far as meals are concerned can steer irreversible damages upon several organic systems. This study had as aim evaluate the effects the low-protein diet had over the formation and composition of the teeth components. 18 females and 6 males were used for the experiment. 12 from the 18 females had undertaken the low-protein diet (DH) for 03 weeks and the other 6, which remained, and those males had undertaken a controlled diet (DC) for the same period. All animals had the diets during their mating, pregnancy and lactation cycle. As soon as the offsprings had been born, 10 young males and females of each group faced a disease hood analysis to check the teeth germs of their lower fore teeth. The rest of the group had their lactation cycle normally 60 days. Then they were put to death and had their lower fore teeth removed both to be analyzed through a scanning electronic microscopy (SEM) of the structure alterations and to have their calcium checked by an atomic absorption of the phosphorus vanadate-molibdate method and by other minerals EDX method. The animals livers were removed to have their hepatic proteins analyzed as well. The histopatologic study showed that at first day of birth, all animals had their lower fore teeth come out. It was verified that 90% of the animals teeth were in an apposition and calcification period and it was possible to observe the dentin formation from 60% of the 90% already mentioned. Through the SEM method it could be realized that 90% of the animals of the DH group had their lower fore teeth easily broken and no definite shape. In this same group itself, it was also observed long micro fissures 369,66 nm ± 3,45 while the DC group had fissures of 174 nm ± 5,72. Now regarding the calcium and phosphorus concentration, it could be noticed that there was a great reduction of these components and other minerals in the DH group. Almost all minerals, except for the Cl and K, presented higher levels in the DC group enamel.The reduction of the protein input greatly influenced the offsprings´ weight and height. However the hepatic proteins had no important difference between the groups what can make one believe that those animals suffered from protein malnutrition of marasmic kind
Resumo:
Human multipotent mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, have become an important and attractive therapeutic tool since they are easily isolated and cultured, have in vitro expansion potential, substantial plasticity and secrete bioactive molecules that exert trophic effects. The human umbilical cord as a cell source for cell therapy will help to avoid several ethical, political, religious and technical issues. One of the main issues with SC lines from different sources, mainly those of embryonic origin, is the possibility of chromosomal alterations and genomic instability during in vitro expansion. Cells isolated from one umbilical cord exhibited a rare balanced paracentric inversion, likely a cytogenetic constitutional alteration, karyotype: 46,XY,inv(3)(p13p25~26). Important genes related to cancer predisposition and others involved in DNA repair are located in 3p25~26. Titanium is an excellent biomaterial for bone-implant integration; however, the use can result in the generation of particulate debris that can accumulate in the tissues adjacent to the prosthesis, in the local bone marrow, in the lymph nodes, liver and spleen. Subsequently may elicit important biological responses that aren´t well studied. In this work, we have studied the genetic stability of MSC isolated from the umbilical cord vein during in vitro expansion, after the cryopreservation, and under different concentrations and time of exposition to titanium microparticles. Cells were isolated, in vitro expanded, demonstrated capacity for osteogenic, adipogenic and chondrogenic differentiation and were evaluated using flow cytometry, so they met the minimum requirements for characterization as MSCs. The cells were expanded under different concentrations and time of exposition to titanium microparticles. The genetic stability of MSCs was assessed by cytogenetic analysis, fluorescence in situ hybridization (FISH) and analysis of micronucleus and other nuclear alterations (CBMN). The cells were able to internalize the titanium microparticles, but MSCs preserve their morphology, differentiation capacity and surface marker expression profiles. Furthermore, there was an increase in the genomic instability after long time of in vitro expansion, and this instability was greater when cells were exposed to high doses of titanium microparticles that induced oxidative stress. It is necessary always assess the risks/ benefits of using titanium in tissue therapy involving MSCs, considering the biosafety of the use of bone regeneration using titanium and MSCs. Even without using titanium, it is important that the therapeutic use of such cells is based on analyzes that ensure quality, security and cellular stability, with the standardization of quality control programs appropriate. In conclusion, it is suggested that cytogenetic analysis, FISH analysis and the micronucleus and other nuclear alterations are carried out in CTMH before implanting in a patient
Resumo:
The low tenacity presented by the Portland cement pastes used in the oil wells cementation has been motivating several researches with attention focused on alternative materials. Additives have been developed to generate flexible pastes with mechanical resistance capable to support the expansions and retractions of the metallic covering of the wells that submit to the steam injection, technique very used to increase the recovery factor in oil reservoirs with high viscosity. A fresh paste with inadequate rheological behavior may commit the cementation process seriously, involving flaws that affect the performance of the paste substantially in the hardened state. This work proposes the elaboration and the rheological analysis of Portland cement pastes with addition of residues of rubber tire in several proportions, with the aim of minimizing the damages provoked in the hem cementing of these wells. By thermogravimetric analysis, the particles of eraser that go by the sieve of 0,5mm (35 mesh) opening and treated superficially with NaOH solution of 1 mol/L presented appropriate thermal resistance for wells that submit to thermal cyclic. The evaluation of the study based on the results of the rheological analysis of the pastes, complemented by the mechanical analysis, thickening, stability, tenor of free water and filtrate loss, being used as parameter a paste reference, without rubber addition. The results showed satisfactory rheology, passive of few corrections; considerable loss of mechanical resistance (traction and compression), compensated by earnings of tenacity, however with established limits for its application in oil wells; satisfactory stability, free water and thickening time
Resumo:
A frequently encountered difficulty in oral prosthetics is associated with the loss of metallic alloys during the melting stage of the production of metal-ceramic replacement systems. Remelting such materials could impar their use in oral rehabilitation due to loss in esthetics, as well as in the chemical, physical, electrochemical and mechanical properties. Nowadays, the Ni-Cr-Mo-Ti alloy is widely used in metal-ceramic systems. Manufacturers state that this material can be remelted without significant alterations in its behavior, however little has been established as to the changes in the performance of this alloy after successive remelting, which is common practice in oral prosthetics. Therefore, the objective of this study was to evaluate possible changes in the esthetics and associated properties of metalceramic samples consisting of Ni-Cr-Mo-Ti and dental porcelain. Three to five remelting steps were carried out. The results revealed that Ni-Cr-Mo-Ti can be safely used even after three remelting steps. Further remelting significantly affect the characteristics of the alloys and should not be recommended for the manufacture of metal-ceramic systems
Resumo:
The partial fixed prosthodontics restoration is used to rehabilitate form and function of partial or total compromised teeth, having to remain permanently joined to remainder tooth. The most useful material on prosthodontics is the feldspar porcelain, commercialized as aluminosilicate powders. Dental porcelains are presented with limited mechanical properties to rehabilitate extensive spaces. The association with Ni-Cr metallic systems (metal-ceramic system) allows that the metallic substructure compensates the fragile porcelain nature, preserving the thermal insulation and aesthetics desirable, as well as reducing the possibility of cracking during matication efforts. Cohesive flaws by low mechanical strength connect the metallic substructure to the oral environment, characterized by a electrolytic solution (saliva), by aggressive temperature, pH cyclic changes and mechanical requests. This process results on ionic liberation that could promote allergic or inflammatory responses, and/or clinical degradation of ceramometal system. The aim of this study was to evaluate the presence of an intermediate titanium layer on the microscopic fracture behavior of porcelains on ceramometal systems. Plasma deposition of titanium films result in regular passivating oxide layers which act as barriers to protect the metallic substrate against the hazardous effects of corrosive saliva. Tribocorrosion tests were performed to simulate the oral environment and mechanical stress, making it possible the early detection of crack formation and growth on metal-ceramic systems, which estimate the adherence between the compounds of this system. Plain samples consisting of dental feldspar porcelain deposited either onto metallic substrates or titanium films were fired and characterized by scanning electron microscopy. The result showed that the titanium film improved the adherence of the system compared to conventional metal-ceramic interfaces, thus holding crack propagation
Resumo:
Dissertação para obtenção do grau de Mestre no Instituto Superior de Ciências da Saúde Egas Moniz
Resumo:
Lightweight oilwell cement slurries have been recently studied as a mean to improve zonal isolation and sheath-porous formation adherence. Foamed slurries consisting of Portland cement and air-entraining admixtures have become an interesting option for this application. The loss in hydrostatic pressure as a consequence of cement hydration results in the expansion of the air bubbles entrapped in the cement matrix, thus improving the sheath-porous formation contact. Consequently, slurries are able to better retain their water to complete the hydration process. The main objective of the present study was to evaluate the effect of the addition of an air-entraining admixture on the density, stability and permeability of composite slurries containing Portland cement and diatomite as light mineral load. Successful formulations are potential cementing materials for low fracture gradient oilwells. The experimental procedures used for slurry preparation and characterization were based on the American Petroleum Institute and ABNT guidelines Slurries containing a pre-established concentration of the air-entraining admixture and different contents of diatomite were prepared aiming at final densities of 13 to 15 lb/gal. The results revealed that the reduction of 15 to 25% of the density of the slurries did not significantly affect their strength. The addition of both diatomite and the air-entraining admixture increased the viscosity of the slurry providing better air-bubble retention in the volume of the slurry. Stable slurries depicted bottom to top density variation of less than 1.0 lb/gal and length reduction of the stability sample of 5.86 mm. Finally, permeability coefficient values between 0.617 and 0.406 mD were obtained. Therefore, lightweight oilwell cement slurries depicting a satisfactory set of physicochemical and mechanical properties can be formulated using a combination of diatomite and air-entraining admixtures for low fracture gradient oilwells
Resumo:
The development of activities in the oil and gas sector has been promoting the search for materials more adequate to oilwell cementing operation. In the state of Rio Grande do Norte, the cement sheath integrity tend to fail during steam injection operation which is necessary to increase oil recovery in reservoir with heavy oil. Geopolymer is a material that can be used as alternative cement. It has been used in manufacturing of fireproof compounds, construction of structures and for controlling of toxic or radioactive waste. Latex is widely used in Portland cement slurries and its characteristic is the increase of compressive strength of cement slurries. Sodium Tetraborate is used in dental cement as a retarder. The addition of this additive aim to improve the geopolymeric slurries properties for oilwell cementing operation. The slurries studied are constituted of metakaolinite, potassium silicate, potassium hydroxide, non-ionic latex and sodium tetraborate. The properties evaluated were: viscosity, compressive strength, thickening time, density, fluid loss control, at ambient temperature (27 ºC) and at cement specification temperature. The tests were carried out in accordance to the practical recommendations of the norm API RP 10B. The slurries with sodium tetraborate did not change either their rheological properties or their mechanical properties or their density in relation the slurry with no additive. The increase of the concentration of sodium tetraborate increased the water loss at both temperatures studied. The best result obtained with the addition of sodium tetraborate was thickening time, which was tripled. The addition of latex in the slurries studied diminished their rheological properties and their density, however, at ambient temperature, it increased their compressive strength and it functioned as an accelerator. The increase of latex concentration increased the presence of water and then diminished the density of the slurries and increased the water loss. From the results obtained, it was concluded that sodium tetraborate and non-ionic latex are promising additives for geopolymer slurries to be used in oilwell cementing operation
Resumo:
María Eugenia Dengo es una de las principales pensadoras y educadoras del siglo XX, su obra está sumergida en una serie de ideas filosóficas y humanistas que le permitieron vislumbrar algunas de las necesidades educativas costarricenses. Con el estudio y seguimiento de varios filósofos costarricenses, empezando con su padre Omar Dengo, su tesis basada en los poemas de Roberto Brenes Mesén y de la mano con Dra. Emma Gamboa, inició un largo camino en la investigación educativa con cimentos humanistas. Palabras claves: María Eugenia Dengo, educación, humanismo, pensadores/as costarricenses, ideas filosóficas costarricenses. Abstract María Eugenia Dengo is one of the most outstanding thinkers and teachers of the 20th. Century in Costa Rica. Her work, developed throughout her philosophical and humanistic thinking, fulfilled some of the most urgent educational needs of the country. Throughout the study of several Costa Rican thinkers, starting by his own father, Omar Dengo, followed by her thesis dissertation on Roberto Brenes Mesén poems and side by side with Dr. Emma Gamboa, Dengo set off the road in educational research and its humanistic foundations. Key words: Maria Eugenia Dengo, Education, Humanism, Costa Rican thinkers, Costa Rican philosophical tought
Resumo:
The production of heavy oil fields, typical in the Northeastern region, is commonly stimulated by steam injection. High bottom hole temperatures are responsible not only for the development of deleterious stresses of the cement sheath but also for cement strength retrogression. To overcome this unfavorable scenario, polymeric admixtures can be added to cement slurries to improve its fracture energy and silica flour to prevent strength retrogression. Therefore, the objective of the present study was to investigate the effect of the addition of different concentrations of polyurethane (5-25%) to cement slurries containing 40% BWOC silica flour. The resulting slurries were characterized using standard API (American Petroleum Institute) laboratory tests. In addition to them, the mechanical properties of the slurries, including elastic modulus and microhardness were also evaluated. The results revealed that density, free water and stability of the composite cement/silica/polyurethane slurries were within acceptable limits. The rheological behavior of the slurries, including plastic viscosity, yield strength and gel strength increased with the addition of 10% BWOC polyurethane. The presence of polyurethane reduced the fluid loss of the slurries as well as their elastic modulus. Composite slurries also depicted longer setting times due to the presence of the polymer. As expected, both the mechanical strength and microhardness of the slurries decreased with the addition of polyurethane. However, at high bottom hole temperatures, the strength of the slurries containing silica and polyurethane was far superior than that of plain cement slurries. In summary, the use of polyurethane combined with silica is an interesting solution to better adequate the mechanical behavior of cement slurries to heavy oil fields subjected to steam injection
Resumo:
Cementing operation is one of the most important stages in the oil well drilling processes and has main function to form hydraulic seal between the various permeable zones traversed by the well. However, several problems may occur with the cement sheath, either during primary cementing or during the well production period. Cements low resistance can cause fissures in the cement sheath and compromise the mechanical integrity of the annular, resulting in contamination of groundwater and producing zones. Several researches show that biomass ash, in particular, those generated by the sugarcane industry have pozzolanic activity and can be added in the composition of the cementing slurries in diverse applications, providing improvements in mechanical properties, revenue and cement durability. Due to the importance of a low cost additive that increases the mechanical properties in a well cementing operations, this study aimed to potentiate the use of sugarcane bagasse ash as pozzolanic material, evaluate the mechanisms of action of this one on cement pastes properties and apply this material in systems slurries aimed to cementing a well with 800 m depth and geothermal gradient of 1.7 °F/100 ft, as much primary cementing operations as squeeze. To do this, the ash beneficiation methods were realized through the processes of grinding, sifting and reburning (calcination) and then characterization by X-ray fluorescence, XRD, TG / DTG, specific surface area, particle size distribution by laser diffraction and mass specific. Moreover, the ash pozzolanic activity added to the cement at concentrations of 0%, 20% and 40% BWOC was evaluated by pozzolanic activity index with lime and with Portland cement. The evaluation of the pozzolanic activity by XRD, TG / DTG and compressive strength confirmed the ash reactivity and indicated that the addition of 20% in the composition of cement slurries produces improvement 34% in the mechanical properties of the slurry cured. Cement slurries properties evaluated by rheological measurements, fluid loss, free fluid, slurry sedimentation, thickening time and sonic strength (UCA) were satisfactory and showed the viability of using the sugarcane ash in cement slurries composition for well cementing
Resumo:
A Diabetes Mellitus é conhecida por uma doença metabólica caracterizada por um défice na ação ou secreção da insulina, na qual a consequência direta é o aparecimento de hiperglicemia, isto é, o nível de glicose apresentar valores elevados (Kidambi, 2008; Silva-Sousa, 2003). A DM1, especificamente, é apresentada como uma doença que é resultado da destruição das células beta do pâncreas, desenvolvendo assim, um défice na produção de insulina (Raymond et al., 2001). As complicações orais da DM1 incluem xerostomia, doença periodontal (gengivite e periodontite), abcessos dentários, perda de dentes, lesões de tecidos moles e síndrome de ardência oral. A complicação oral mais frequente da DM1 nas crianças é o aumento da sensibilidade à doença periodontal. A doença periodontal é caracterizada como uma reação inflamatória infecciosa dos tecidos gengivais (gengivite) ou do suporte dos dentes, ou seja, ligamento periodontal, cemento e osso alveolar (periodontite), podendo induzir um certo grau de resistência à insulina. Ambas as doenças resultam da interação entre microorganismos periodontais patogénicos. A avaliação e influência do controlo da doença é expressa pelos valores médios de hemoglobina glicosada (Hba1c) na saúde oral nas crianças e adolescentes com DM1. Vários estudos demonstraram que o controlo glicémico teve uma influencia sobre a saúde oral de crianças e adolescentes com DM1. Assim uma avaliação oral, deve fazer parte de procedimentos de rotina no atendimento de crianças e adolescentes com DM1. O dentista deve ser parte da equipa multidisciplinar que auxilia os indivíduos com DM1. O tratamento precoce numa população infantil com DM1, pode diminuir a severidade da doença periodontal. O presente trabalho tem por objectivo realizar uma revisão bibliográfica sobre a importância do estudo em crianças e adolescentes portadores de DM1 e doenças da cavidade oral, nomeadamente, a periodontite, e respetivas implicações.