973 resultados para CAVITY QUANTUM ELECTRODYNAMICS
Resumo:
We report the first measurement of two-photon absorption (TPA) and self-phase modulation in an InGaAsP/InP multi-quantum-well waveguide. The TPA coefficient, β2, was found to be 60±10 cm/GW at 1.55 μm. Despite operating at 200 nm from the band edge, self-phase modulation as high as 8±2 rad was observed for 30-ps optical pulses at 3.8-W peak input power. A theoretical calculation indicates that this enhanced phase modulation is primarily due to bandfilling in the quantum wells and the free-carrier plasma effect.
Resumo:
A study is presented of grain-boundary cavitation produced in Nimonic 80A by cold-deformation and stress-free annealing. The cavities were found to originate either from transverse cracking of carbide particles, or from decohesion of the particle-grain boundary interfaces. This decohesion could occur either during deformation, or during annealing. The cavities were invariably located at or close to the point of impingement of a matrix slip band on the grain boundary, but not all slip bands at a particular boundary were associated with cavitation. Quantitative evidence is presented showing that the mean number of dislocations associated with each slip band increases with macroscopic strain, but there is considerable variation between slip bands. This accounts for the differential ability of slip bands to result in cavity nucleation.
Resumo:
Resonant tunnelling spectroscopy is used to investigate the energy level spectrum of a wide potential well in the presence of a large magnetic field oriented at angles θ between 0° and 90° to the normal to the plane of the well. In the tilted field geometry, the current-voltage characteristics exhibit a large number of quasiperiodic resonant peaks even though the classical motion of electrons in the potential well is chaotic. The voltage range and spacing of the resonances both change dramatically with θ. We give a quantitative explanation for this behaviour by considering the classical period of unstable periodic orbits within the chaotic sea of the potential well.
Resumo:
We demonstrate the use of resonant bandfilling nonlinearity in an InGaAsP/InGaAsP Multiple Quantum Well (MQW) waveguide due to photogenerated carriers to obtain switching at pulse powers, which can readily be obtained from an erbium amplified diode laser source. In order to produce gating a polarisation rotation gate was used, which relies on an asymmetry in the nonlinear refraction on the principle axes of the waveguide.
Resumo:
Single-mode emission is achieved in previously multimode gain-guided vertical-cavity surface-emitting lasers (VCSEL's) by localized modification of the mirror reflectivity using focused ion-beam etching. Reflectivity engineering is also demonstrated to suppress transverse mode emission in an oxide-confined device, reducing the spectral width from 1.2 nm to less than 0.5 nm.
Resumo:
Multiwavelength pulses were generated using a monolithically integrated device. The device used is an integrated InGaAs/InGaAsP/InP multi-wavelength laser fabricated by selective area regrowth. The device self pulsated on all of the four wavelength channels. 48 ps pulses were obtained which were measured by a 50GHz oscilloscope and 32GHz photodiode which was not bandwidth limited. Simultaneous multi-wavelength pulse generation was also achieved.
Resumo:
A GaAs Vertical Cavity Surface Emitting Laser (VCSEL) that generates controlled modes offset from the center is described. The device is modulated with a 27-1 pseudo-random bit sequence and its output is transmitted along a 1 km length of multimode fiber (MMF). Open eyes are obtained for data rates as high as 1.4Gb/s. The transmission bandwidth increases by a factor of 4 over over-filled launch (OFL). This enhancement is stable against environment influences on the fiber.
Resumo:
A novel integrated Multi-Wavelength Grating Cavity (MGC) laser has been used for multi-channel wavelength conversion at 2.488 Gbits/s. Functions demonstrated include conversion to multiple wavelengths, WDM multiplexing and 1×4 space switching.