997 resultados para CARDIAC TRANSPLANT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cardiomyocyte is a complex biological system where many mechanisms interact non-linearly to regulate the coupling between electrical excitation and mechanical contraction. For this reason, the development of mathematical models is fundamental in the field of cardiac electrophysiology, where the use of computational tools has become complementary to the classical experimentation. My doctoral research has been focusing on the development of such models for investigating the regulation of ventricular excitation-contraction coupling at the single cell level. In particular, the following researches are presented in this thesis: 1) Study of the unexpected deleterious effect of a Na channel blocker on a long QT syndrome type 3 patient. Experimental results were used to tune a Na current model that recapitulates the effect of the mutation and the treatment, in order to investigate how these influence the human action potential. Our research suggested that the analysis of the clinical phenotype is not sufficient for recommending drugs to patients carrying mutations with undefined electrophysiological properties. 2) Development of a model of L-type Ca channel inactivation in rabbit myocytes to faithfully reproduce the relative roles of voltage- and Ca-dependent inactivation. The model was applied to the analysis of Ca current inactivation kinetics during normal and abnormal repolarization, and predicts arrhythmogenic activity when inhibiting Ca-dependent inactivation, which is the predominant mechanism in physiological conditions. 3) Analysis of the arrhythmogenic consequences of the crosstalk between β-adrenergic and Ca-calmodulin dependent protein kinase signaling pathways. The descriptions of the two regulatory mechanisms, both enhanced in heart failure, were integrated into a novel murine action potential model to investigate how they concur to the development of cardiac arrhythmias. These studies show how mathematical modeling is suitable to provide new insights into the mechanisms underlying cardiac excitation-contraction coupling and arrhythmogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The aim of this research was to evaluate the impact of Cardiac Rehabilitation (CR) on risky lifestyles, quality of life, psychopathology, psychological distress and well-being, considering the potential moderating role of depression, anxiety and psychosomatic syndromes on lifestyles modification. The influence of CR on cardiac morbidity and mortality was also evaluated. Methods: The experimental group (N=108), undergoing CR, was compared to a control group (N=85) of patients affected by cardiovascular diseases, not undergoing CR, at baseline and at 1-month, 6- and 12-months follow-ups. The assessment included: the Structured Clinical Interview for DSM-IV, the structured interview based on Diagnostic Criteria for Psychosomatic Research (DCPR), GOSPEL questionnaire on lifestyles, Pittsburgh Sleep Quality Index, Morisky Medication Adherence Scale, MOS 36-Item Short Form Health Survey, Symptom Questionnaire, Psychological Well-Being Scale and 14-items Type D Scale. Results: Compared to the control group, CR was associated to: maintenance of the level of physical activity, improvement of correct dietary behaviors and stress management, enhancement of quality of life and sleep; reduction of the most frequently observed psychiatric diagnoses and psychosomatic syndromes at baseline. On the contrary, CR was not found to be associated with: healthy dietary habits, weight loss and improvement on medications adherence. In addition, there were no relevant effects on sub-clinical psychological distress and well-being, except for personal growth and purpose in life (PWB). Also, CR did not seem to play a protective role against cardiac recurrences. The presence of psychosomatic syndromes and depressive disorders was a mediating factor on the modification of specific lifestyles. Conclusions: The findings highlight the need of a psychosomatic assessment and an evaluation of psychological sub-clinical symptomatology in cardiac rehabilitation, in order to identify and address specific factors potentially associated with the clinical course of the heart disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heart diseases are the leading cause of death worldwide, both for men and women. However, the ionic mechanisms underlying many cardiac arrhythmias and genetic disorders are not completely understood, thus leading to a limited efficacy of the current available therapies and leaving many open questions for cardiac electrophysiologists. On the other hand, experimental data availability is still a great issue in this field: most of the experiments are performed in vitro and/or using animal models (e.g. rabbit, dog and mouse), even when the final aim is to better understand the electrical behaviour of in vivo human heart either in physiological or pathological conditions. Computational modelling constitutes a primary tool in cardiac electrophysiology: in silico simulations, based on the available experimental data, may help to understand the electrical properties of the heart and the ionic mechanisms underlying a specific phenomenon. Once validated, mathematical models can be used for making predictions and testing hypotheses, thus suggesting potential therapeutic targets. This PhD thesis aims to apply computational cardiac modelling of human single cell action potential (AP) to three clinical scenarios, in order to gain new insights into the ionic mechanisms involved in the electrophysiological changes observed in vitro and/or in vivo. The first context is blood electrolyte variations, which may occur in patients due to different pathologies and/or therapies. In particular, we focused on extracellular Ca2+ and its effect on the AP duration (APD). The second context is haemodialysis (HD) therapy: in addition to blood electrolyte variations, patients undergo a lot of other different changes during HD, e.g. heart rate, cell volume, pH, and sympatho-vagal balance. The third context is human hypertrophic cardiomyopathy (HCM), a genetic disorder characterised by an increased arrhythmic risk, and still lacking a specific pharmacological treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical action of the heart is made possible in response to electrical events that involve the cardiac cells, a property that classifies the heart tissue between the excitable tissues. At the cellular level, the electrical event is the signal that triggers the mechanical contraction, inducing a transient increase in intracellular calcium which, in turn, carries the message of contraction to the contractile proteins of the cell. The primary goal of my project was to implement in CUDA (Compute Unified Device Architecture, an hardware architecture for parallel processing created by NVIDIA) a tissue model of the rabbit sinoatrial node to evaluate the heterogeneity of its structure and how that variability influences the behavior of the cells. In particular, each cell has an intrinsic discharge frequency, thus different from that of every other cell of the tissue and it is interesting to study the process of synchronization of the cells and look at the value of the last discharge frequency if they synchronized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coronary collateral circulation has a beneficial role regarding all-cause and cardiac mortality. Hitherto, the underlying mechanism has not been clarified. The aim of this prospective study was to assess the effect of the coronary collateral circulation on electrocardiogram (ECG) QTc time change during short-term myocardial ischaemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a paucity of data on the success rates of achieving percutaneous epicardial access in different groups of patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to assess the effects on exercise performance of supplementing a standard cardiac rehabilitation program with additional exercise programming compared to the standard cardiac rehabilitation program alone in elderly patients after heart surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac rhabdomyomas are benign cardiac tumours with few cardiac complications, but with a known association to tuberous sclerosis that affects the neurologic outcome of the patients. We have analysed the long-term cardiac and neurological outcomes of patients with cardiac rhabdomyomas in order to allow comprehensive prenatal counselling, basing our findings on the records of all patients seen prenatally and postnatally with an echocardiographic diagnosis of cardiac rhabdomyoma encountered from August, 1982, to September, 2007. We analysed factors such as the number and the location of the tumours to establish their association with a diagnosis of tuberous sclerosis, predicting the cardiac and neurologic outcomes for the patients.Cardiac complications include arrhythmias, obstruction of the ventricular outflow tracts, and secondary cardiogenic shock. Arrhythmias were encountered most often during the neonatal period, with supraventricular tachycardia being the commonest rhythm disturbance identified. No specific dimension or location of the cardiac rhabdomyomas predicted the disturbances of rhythm.The importance of the diagnosis of tuberous sclerosis is exemplified by the neurodevelopmental complications, with four-fifths of the patients showing epilepsy, and two-thirds having delayed development. The presence of multiple cardiac tumours suggested a higher risk of being affected by tuberous sclerosis. The tumours generally regress after birth, and cardiac-related problems are rare after the perinatal period. Tuberous sclerosis and the associated neurodevelopmental complications dominate the clinical picture, and should form an important aspect of the prenatal counselling of parents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Skin tumours, in particular squamous-cell carcinomas (SCC), are the most common malignant conditions developing in transplant recipients. The aim of this study is to investigate the frequency and type of skin cancer in patients receiving immunosuppressive therapy after organ transplantation. METHODS: Multivariate logistic regression analysis was performed on data of 243 renal transplant patients who attended the dermatology outpatient clinic for the first time after transplantation in the period January 2002-October 2005. RESULTS: We found an increased risk of actinic keratosis (AK) and SCC in renal transplant recipients with a basal cell carcinoma (BCC) / SCC ratio of 1:7. Older patients had AK more frequently (odds ratio [OR] 1.11, 95% confidence interval [CI] 1.06-1.15; p <0.0001) and SCC (OR 1.14, CI 1.07-1.22; p <0.0001) than younger patients. Men had AK (OR 0.19, CI 0.08-0.45; p = 0.0002) and SCC (OR 0.25, CI 0.07-0.89; p = 0.0332) more frequently than women. The duration of immunosuppressive therapy correlated significantly with the numbers of AKs (OR 1.15, CI 1.08-1.24; p <0.0001) and SCCs (OR 1.16, CI 1.05-1.28; p = 0.0025), and patients with fair skin had more AKs (OR 0.31, CI 0.14-1.24; p <0.0001) and SCCs (OR 0.11, CI 0.02-0.52; p = 0.0054) than darker skinned patients. We could not identify any specific immunosuppressive drug as a distinct risk factor for AK or non-melanoma skin cancer (NMSC). CONCLUSION: Skin cancers are increased in the renal transplant population. Main risk factors for skin cancers are fair skin type and long duration of immunosuppressive therapy. A follow-up programme is necessary for early detection of skin cancer and precancerous conditions. Preventive strategies should include specialist dermatological monitoring and self-examination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac ion channels play an essential role in the generation of the action potential of cardiomyocytes. Over the past 15 years, a new field of research called channelopathies has emerged; it regroups all diseases caused by ion channel dysfunction. Investigators have largely determined the physiological roles of cardiac ion channels, but little is known about the molecular determinants of their regulation. Two post-translational mechanisms that are crucial in determining the fate of proteins are ubiquitylation and the SUMOylation pathways, which lead to the degradation and/or regulation of modified proteins. Recently, several groups have investigated the physiological impacts of these mechanisms on the regulation of different classes of cardiac ion channels. The objective of this review is to summarize and briefly discuss these results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Loss-of-function mutations in SCN5A, the gene encoding Na(v)1.5 Na+ channel, are associated with inherited cardiac conduction defects and Brugada syndrome, which both exhibit variable phenotypic penetrance of conduction defects. We investigated the mechanisms of this heterogeneity in a mouse model with heterozygous targeted disruption of Scn5a (Scn5a(+/-) mice) and compared our results to those obtained in patients with loss-of-function mutations in SCN5A. METHODOLOGY/PRINCIPAL FINDINGS: Based on ECG, 10-week-old Scn5a(+/-) mice were divided into 2 subgroups, one displaying severe ventricular conduction defects (QRS interval>18 ms) and one a mild phenotype (QRS< or = 18 ms; QRS in wild-type littermates: 10-18 ms). Phenotypic difference persisted with aging. At 10 weeks, the Na+ channel blocker ajmaline prolonged QRS interval similarly in both groups of Scn5a(+/-) mice. In contrast, in old mice (>53 weeks), ajmaline effect was larger in the severely affected subgroup. These data matched the clinical observations on patients with SCN5A loss-of-function mutations with either severe or mild conduction defects. Ventricular tachycardia developed in 5/10 old severely affected Scn5a(+/-) mice but not in mildly affected ones. Correspondingly, symptomatic SCN5A-mutated Brugada patients had more severe conduction defects than asymptomatic patients. Old severely affected Scn5a(+/-) mice but not mildly affected ones showed extensive cardiac fibrosis. Mildly affected Scn5a(+/-) mice had similar Na(v)1.5 mRNA but higher Na(v)1.5 protein expression, and moderately larger I(Na) current than severely affected Scn5a(+/-) mice. As a consequence, action potential upstroke velocity was more decreased in severely affected Scn5a(+/-) mice than in mildly affected ones. CONCLUSIONS: Scn5a(+/-) mice show similar phenotypic heterogeneity as SCN5A-mutated patients. In Scn5a(+/-) mice, phenotype severity correlates with wild-type Na(v)1.5 protein expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cardiac voltage-gated Na(+) channel Na(v)1.5 generates the cardiac Na(+) current (INa). Mutations in SCN5A, the gene encoding Na(v)1.5, have been linked to many cardiac phenotypes, including the congenital and acquired long QT syndrome, Brugada syndrome, conduction slowing, sick sinus syndrome, atrial fibrillation, and dilated cardiomyopathy. The mutations in SCN5A define a sub-group of Na(v)1.5/SCN5A-related phenotypes among cardiac genetic channelopathies. Several research groups have proposed that Na(v)1.5 may be part of multi-protein complexes composed of Na(v)1.5-interacting proteins which regulate channel expression and function. The genes encoding these regulatory proteins have also been found to be mutated in patients with inherited forms of cardiac arrhythmias. The proteins that associate with Na(v)1.5 may be classified as (1) anchoring/adaptor proteins, (2) enzymes interacting with and modifying the channel, and (3) proteins modulating the biophysical properties of Na(v)1.5 upon binding. The aim of this article is to review these Na(v)1.5 partner proteins and to discuss how they may regulate the channel's biology and function. These recent investigations have revealed that the expression level, cellular localization, and activity of Na(v)1.5 are finely regulated by complex molecular and cellular mechanisms that we are only beginning to understand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perioperative metabolic changes in cardiac surgical patients are not only induced by tissue injury and extracorporeal circulation per se: the systemic inflammatory response to surgical trauma and extracorporeal circulation, perioperative hypothermia, cardiovascular and neuroendocrine responses, and drugs and blood products used to maintain cardiovascular function and anesthesia contribute to varying degrees. The pathophysiologic changes include increased oxygen consumption and energy expenditure; increased secretion of adrenocorticotrophic hormone, cortisol, epinephrine, norepinephrine, insulin, and growth hormone; and decreased total tri-iodothyronine levels. Easily measurable metabolic consequences of these changes include hyperglycemia, hyperlactatemia, increased aspartate, glutamate and free fatty acid concentrations, hypokalemia, increased production of inflammatory cytokines, and increased consumption of complement and adhesion molecules. Nutritional risk before elective cardiac surgery-defined as preoperative unintended pathologic weight loss/low amount of food intake in the preceding week or low body mass index-is related to adverse postoperative outcome. Improvements in surgical techniques, anesthesia, and perioperative management have been designed to minimize the stressful stimulus to catabolism, thereby slowing the wasting process to the point where much less nutrition is required to meet metabolic requirements. Early nutrition in cardiac surgery is safe and well tolerated.