967 resultados para CANOPY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the importance of mangrove ecosystems in the global carbon budget, the relationships between environmental drivers and carbon dynamics in these forests remain poorly understood. This limited understanding is partly a result of the challenges associated with in situ flux studies. Tower-based CO2 eddy covariance (EC) systems are installed in only a few mangrove forests worldwide, and the longest EC record from the Florida Everglades contains less than 9 years of observations. A primary goal of the present study was to develop a methodology to estimate canopy-scale photosynthetic light use efficiency in this forest. These tower-based observations represent a basis for associating CO2 fluxes with canopy light use properties, and thus provide the means for utilizing satellite-based reflectance data for larger scale investigations. We present a model for mangrove canopy light use efficiency utilizing the enhanced green vegetation index (EVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that is capable of predicting changes in mangrove forest CO2 fluxes caused by a hurricane disturbance and changes in regional environmental conditions, including temperature and salinity. Model parameters are solved for in a Bayesian framework. The model structure requires estimates of ecosystem respiration (RE), and we present the first ever tower-based estimates of mangrove forest RE derived from nighttime CO2 fluxes. Our investigation is also the first to show the effects of salinity on mangrove forest CO2 uptake, which declines 5% per each 10 parts per thousand (ppt) increase in salinity. Light use efficiency in this forest declines with increasing daily photosynthetic active radiation, which is an important departure from the assumption of constant light use efficiency typically applied in satellite-driven models. The model developed here provides a framework for estimating CO2 uptake by these forests from reflectance data and information about environmental conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2005 we began a multi-year intensive monitoring and assessment study of tropical hardwood hammocks within two distinct hydrologic regions in Everglades National Park, under funding from the CERP Monitoring and Assessment Program. In serving as an Annual Report for 2010, this document, reports in detail on the population dynamics and status of tropical hardwood hammocks in Shark Slough and adjacent marl prairies during a 4-year period between 2005 and 2009. 2005-09 was a period that saw a marked drawdown in marsh water levels (July 2006 - July 2008), and an active hurricane season in 2005 with two hurricanes, Hurricane Katrina and Wilma, making landfall over south Florida. Thus much of our focus here is on the responses of these forests to annual variation in marsh water level, and on recovery from disturbance. Most of the data are from 16 rectangular permanent plots of 225-625 m2 , with all trees mapped and tagged, and bi-annual sampling of the tree, sapling, shrub, and herb layer in a nested design. At each visit, canopy photos were taken and later analyzed for determination of interannual variation in leaf area index and canopy openness. Three of the plots were sampled at 2-month intervals, in order to gain a better idea of seasonal dynamics in litterfall and litter turnover. Changes in canopy structure were monitored through a vertical line intercept method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report examines the interaction between hydrology and vegetation over a 10-year period, between 2001/02 and 2012 within six permanent tree island plots located on three tree islands, two plots each per tree island, established in 2001/02, along a hydrologic and productivity gradient. We hypothesize that: (H1) hydrologic differences within plots between census dates will result in marked differences in a) tree and sapling densities, b) tree basal area, and c) forest structure, i.e., canopy volume and height, and (H2) tree island growth, development, and succession is dependent on hydrologic fluxes, particularly during periods of prolonged droughts or below average hydroperiods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Truffle production in France has declined by more than 90% over the last 100 years. Commonly cited causes include a massive rural exodus that led to more open canopy forests becoming less intensively managed and reverting to closed canopy forests, the latter which do not favor truffle production. Scholars have labeled such a process as a forest transition, when a location goes from previously losing forest cover to regrowth and net gains in forest cover. Scholars have single out France as a place with a marked forest transition. Commonly these increases in forest cover are assumed to be a beneficial public good. Here, I question if it is accurate to view forest transitions as being universally beneficial, especially considering that this changing ecology has had strongly deleterious impacts on truffle production and those who rely on it for revenue. In this study I will use remote sensed images to examine if a forest transition did in fact occur in the department of Lot, France and what are the impacts forest trends have had on truffle cultivation. I will further estimates potential losses of revenue from truffle production which has resulted from any existing forest transition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The elevational distributions of tropical treelines are thought to be determined by temperature, and are predicted to shift upslope in response to global warming. In contrast to this hypothesis, global-scale studies have shown that only half of all studied treelines are shifting upslope. Understanding how treelines will respond to climate change has important implications for global biodiversity, especially in the tropics, because tropical treelines generally represent the upper-elevation distribution limit of the hyper-diverse cloudforest ecosystem. In Chapter 1, I introduce the idea that grasslands found above tropical treelines may represent a potential grass ceiling which forest species cannot cross or invade. I use an extensive literature review to outline potential mechanisms which may be acting to stabilize treeline and prevent forest expansion into high-elevation grasslands. In Chapters 2-4, I begin to explore these potential mechanisms through the use of observational and experimental methods. In Chapter 2, I show that there are significant numbers of seedlings occurring just outside of the treeline in the open grasslands and that seed rain is unlikely to limit seedling recruitment above treeline. I also show that microclimates outside of the closed-canopy cloudforest are highly variable and that mean temperatures are likely a poor explanation of tropical treeline elevations. In Chapter 3, I show that juvenile trees maintain freezing resistances similar to adults, but nighttime radiative cooling near the ground in the open grassland results in lower cold temperatures relative to the free atmosphere, exposing seedlings of some species growing above treeline to lethal frost events. In Chapter 4, I use a large-scale seedling transplant experiment to test the effects of mean temperature, absolute low temperature and shade on transplanted seedling survival. I find that increasing mean temperature negatively affects seedling survival of two treeline species while benefiting another. In addition, low temperature extremes and the presence of shade also appear to be important factors affecting seedling survival above tropical treelines. This work demonstrates that mean temperature is a poor predictor of tropical treelines and that temperature extremes, especially low temperatures, and non-climatic variables should be included in predictions of current and future tropical treeline dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined how different rainfall regimes affect a set of leaf functional traits related to plant stress and forest structure in tropical dry forest (TDF) species on limestone substrate. One hundred fifty eight individuals of four tree species were sampled in six ecological sites in south Florida and Puerto Rico, ranging in mean annual rainfall from 858 to 1933 mm yr-1. Leaf nitrogen content, specific leaf area (SLA), and N:P ratio of evergreen species, but not deciduous species, responded positively to increasing rainfall. Phosphorus content was unaffected in both groups. Canopy height and basal area reached maxima of 10.3 m and 31.4 m2 ha-1, respectively, at 1168 mm annual rainfall. Leaf traits reflected soil properties only to a small extent. This led us to the conclusion that water is a major limiting factor in TDF and some species that comprise TDF ecosystems are limited by nitrogen in limestone sites with less than ~1012 mm rainfall, but organismal, biological and/or abiotic forces other than rainfall control forest structure in moister sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concentration of avian song at first light (i.e., the dawn chorus) is widely appreciated but has an enigmatic functional significance. The most widely accepted explanation is that birds are active but light levels are not adequate for foraging. As a consequence, the time of first song should be predictable from the light level of individuals singing at dawn. To test this, I collected data from a tropical forest of Ecuador, involving 130 species. Light intensity at first song was a highly repeatable species' trait (r = 0.57). Foraging height was a good predictor of first song, with canopy birds singing at lower light levels than understory birds (r = -0.62). Although light level predicts the onset of singing in tropical and temperate bird communities, the structural complexity and trophic specializations in tropical forests may exert an important influence, which has been overlooked in research conducted in the temperate zone.