993 resultados para CANCER CHEMOPREVENTION
Resumo:
Background Few studies have been undertaken to understand the employment impact in patients with colorectal cancer and none in middle-aged individuals with cancer. This study described transitions in, and key factors influencing, work participation during the 12 months following a diagnosis of colorectal cancer. Methods We enrolled 239 adults during 2010 and 2011who were employed at the time of their colorectal cancer diagnosis and were prospectively followed over 12 months. They were compared to an age- and gender-matched general population group of 717 adults from the Household, Income and Labour Dynamics in Australia (HILDA) Survey. Data were collected using telephone and postal surveys. Primary outcomes included work participation at 12 months, changes in hours worked and time to work re-entry. Multivariable logistic and Cox proportional hazards models were undertaken. Results A significantly higher proportion of participants with colorectal cancer (27%) had stopped working at 12 months than participants from the comparison group (8%) (p < 0.001). Participants with cancer who returned to work took a median of 91 days off work (25–75 percentiles: 14–183 days). For participants with cancer, predictors of not working at 12 months included: being older, lower BMI and lower physical well-being. Factors related to delayed work re-entry included not being university-educated, working for an employer with more than 20 employees in a non-professional or managerial role, longer hospital stay, poorer perceived financial status and having or had chemotherapy. Conclusions In middle-adulthood, those working and diagnosed with colorectal cancer can expect to take around three months off work. Individuals treated with chemotherapy, without a university degree and from large employers could be targeted for specific assistance for a more timely work entry.
Resumo:
•EMT is important for embryonic development, wound healing, and placentation. •Some cancers appear to exploit this process for increased metastatic potential. •Therefore, this pathway is of great therapeutic interest in the treatment of cancer. The spread of cancer cells to distant organs represents a major clinical challenge in the treatment of cancer. Epithelial–mesenchymal transition (EMT) has emerged as a key regulator of metastasis in some cancers by conferring an invasive phenotype. As well as facilitating metastasis, EMT is thought to generate cancer stem cells and contribute to therapy resistance. Therefore, the EMT pathway is of great therapeutic interest in the treatment of cancer and could be targeted either to prevent tumor dissemination in patients at high risk of developing metastatic lesions or to eradicate existing metastatic cancer cells in patients with more advanced disease. In this review, we discuss approaches for the design of EMT-based therapies in cancer, summarize evidence for some of the proposed EMT targets, and review the potential advantages and pitfalls of each approach
Resumo:
Background Multilevel and spatial models are being increasingly used to obtain substantive information on area-level inequalities in cancer survival. Multilevel models assume independent geographical areas, whereas spatial models explicitly incorporate geographical correlation, often via a conditional autoregressive prior. However the relative merits of these methods for large population-based studies have not been explored. Using a case-study approach, we report on the implications of using multilevel and spatial survival models to study geographical inequalities in all-cause survival. Methods Multilevel discrete-time and Bayesian spatial survival models were used to study geographical inequalities in all-cause survival for a population-based colorectal cancer cohort of 22,727 cases aged 20–84 years diagnosed during 1997–2007 from Queensland, Australia. Results Both approaches were viable on this large dataset, and produced similar estimates of the fixed effects. After adding area-level covariates, the between-area variability in survival using multilevel discrete-time models was no longer significant. Spatial inequalities in survival were also markedly reduced after adjusting for aggregated area-level covariates. Only the multilevel approach however, provided an estimation of the contribution of geographical variation to the total variation in survival between individual patients. Conclusions With little difference observed between the two approaches in the estimation of fixed effects, multilevel models should be favored if there is a clear hierarchical data structure and measuring the independent impact of individual- and area-level effects on survival differences is of primary interest. Bayesian spatial analyses may be preferred if spatial correlation between areas is important and if the priority is to assess small-area variations in survival and map spatial patterns. Both approaches can be readily fitted to geographically enabled survival data from international settings
Resumo:
Atmospheric pressure gas plasma (AGP) generates reactive oxygen species (ROS) that induce apoptosis in cultured cancer cells. The majority of cancer cells develop a ROS-scavenging anti-oxidant system regulated by Nrf2, which confers resistance to ROS-mediated cancer cell death. Generation of ROS is involved in the AGP-induced cancer cell death of several colorectal cancer cells (Caco2, HCT116 and SW480) by activation of ASK1-mediated apoptosis signaling pathway without affecting control cells (human colonic sub-epithelial myofibroblasts; CO18, human fetal lung fibroblast; MRC5 and fetal human colon; FHC). However, the identity of an oxidase participating in AGP-induced cancer cell death is unknown. Here, we report that AGP up-regulates the expression of Nox2 (NADPH oxidase) to produce ROS. RNA interference designed to target Nox2 effectively inhibits the AGP-induced ROS production and cancer cell death. In some cases both colorectal cancer HT29 and control cells showed resistance to AGP treatment. Compared to AGP-sensitive Caco2 cells, HT29 cells show a higher basal level of the anti-oxidant system transcriptional regulator Nrf2 and its target protein sulfiredoxin (Srx) which are involved in cellular redox homeostasis. Silencing of both Nrf2 and Srx sensitized HT29 cells, leads to ROS overproduction and decreased cell viability. This indicates that in HT29 cells, Nrf2/Srx axis is a protective factor against AGP-induced oxidative stress. The inhibition of Nrf2/Srx signaling should be considered as a central target in drug-resistant colorectal cancer treatments.
Resumo:
Background Increases in the incidence of squamous cell oropharyngeal cancer (OPC) have been reported from some countries, but have not been assessed in Australia or New Zealand. This study examines trends for squamous cell OPC and squamous cell oral cavity cancer (OCC) in two similarly sized populations, New Zealand and Queensland, Australia. Methods Incidence data for 1982–2010 were obtained from the respective population-based cancer registries for squamous cell OPC and OCC, by subsite, sex, and age. Time trends and annual percentage changes (APCs) were assessed by joinpoint regression. Results The incidence rates of squamous cell OPC in males in New Zealand since 2005 and Queensland since 2006 have increased rapidly, with APCs of 11.9% and 10.6% respectively. The trends were greatest at ages 50–69 and followed more gradual increases previously. In females, rates increased by 2.1% per year in New Zealand from 1982, but by only 0.9% (not significant) in Queensland. In contrast, incidence rates for OCC decreased by 1.2% per year in males in Queensland since 1982, but remained stable for females in Queensland and for both sexes in New Zealand. Overall, incidence rates for both OCC and OPC were substantially higher in Queensland than in New Zealand. In males in both areas, OPC incidence is now higher than that of OCC. Conclusions Incidence rates of squamous cell OPC have increased rapidly in men, while rates of OCC have been stable or reducing, showing distinct etiologies. This has both clinical and public health importance, including implications for the extension of human papilloma virus (HPV) vaccination to males.
Resumo:
Objective: To provide an overview of the incidence and mortality of female breast cancer for countries in the Asia-Pacific region. Methods: Statistical information about breast cancer was obtained from publicly available cancer registry and mortality databases (such as GLOBOCAN), and supplemented with data requested from individual cancer registries. Rates were directly age-standardised to the Segi World Standard population and trends were analysed using joinpoint models. Results: Breast cancer was the most common type of cancer among females in the region, accounting for 18% of all cases in 2012, and was the fourth most common cause of cancer-related deaths (9%). Although incidence rates remain much higher in New Zealand and Australia, rapid rises in recent years were observed in several Asian countries. Large increases in breast cancer mortality rates also occurred in many areas, particularly Malaysia and Thailand, in contrast to stabilising trends in Hong Kong and Singapore, while decreases have been recorded in Australia and New Zealand. Mortality trends tended to be more favourable for women aged under 50 compared to those who were 50 years or older. Conclusion: It is anticipated that incidence rates of breast cancer in developing countries throughout the Asia-Pacific region will continue to increase. Early detection and access to optimal treatment are the keys to reducing breast cancer-related mortality, but cultural and economic obstacles persist. Consequently, the challenge is to customise breast cancer control initiatives to the particular needs of each country to ensure the best possible outcomes.
Resumo:
Background Prostate cancer (PCa) frequently relapses after hormone ablation therapy. Unfortunately, once progressed to the castration resistant stage, the disease is regarded as incurable as prostate cancer cells are highly resistant to conventional chemotherapy. Method We recently reported that the two natural compounds polysaccharopeptide (PSP) and Gamma-tocotrienols (γ-T3) possessed potent anti-cancer activities through targeting of CSCs. In the present study, using both prostate cancer cell line and xenograft models, we seek to investigate the therapeutic potential of combining γ-T3 and PSP in the treatment of prostate cancer. Result We showed that in the presence of PSP, γ-T3 treatment induce a drastic activation of AMP-activated protein kinase (AMPK). This was accompanied with inactivation of acetyl-CoA carboxylase (ACC), as evidenced by the increased phosphorylation levels at Ser 79. In addition, PSP treatment also sensitized cancer cells toward γ-T3-induced cytotoxicity. Furthermore, we demonstrated for the first time that combination of PSP and γ-T3 treaments significantly reduced the growth of prostate tumor in vivo. Conclusion Our results indicate that PSP and γ-T3 treaments may have synergistic anti-cancer effect in vitro and in vivo, which warrants further investigation as a potential combination therapy for the treatment of cancer.
Resumo:
Background Multiple health behavior change can ameliorate adverse effects of cancer. Purpose The purpose of this study was to determine the effects of a multiple health behavior change intervention (CanChange) for colorectal cancer survivors on psychosocial outcomes and quality of life. Methods A total of 410 colorectal cancer survivors were randomized to a 6-month telephone-based health coaching intervention (11 sessions using acceptance and commitment therapy strategies focusing on physical activity, weight management, diet, alcohol, and smoking) or usual care. Posttraumatic growth, spirituality, acceptance, mindfulness, distress, and quality of life were assessed at baseline, 6 and 12 months. Results Significant intervention effects were observed for posttraumatic growth at 6 (7.5, p < 0.001) and 12 months (4.1, p = 0.033), spirituality at 6 months (1.8, p = 0.011), acceptance at 6 months (0.2, p = 0.005), and quality of life at 6 (0.8, p = 0.049) and 12 months (0.9, p = 0.037). Conclusions The intervention improved psychosocial outcomes and quality of life (physical well-being) at 6 months with most effects still present at 12 months. (Trial Registration Number: ACTRN12608000399392).
Resumo:
Prostate cancer frequently metastasizes to bone, which becomes incurable; yet how cancer cells manage to migrate and grow inside the bone remains unknown. In this study I have discovered that both bone and fat cells within the bone marrow actively promote the survival and expansion of prostate cancer cells, and have subsequently developed approaches that can effectively inhibit these processes. Therefore, my work offers opportunities for the development of new prognostic and therapeutic approaches against metastatic prostate cancer and have the potential for improving the treatment outcome of the patients.
Resumo:
Objective A cluster of vulvar cancer exists in young Aboriginal women living in remote communities in Arnhem Land, Australia. A genetic case–control study was undertaken involving 30 cases of invasive vulvar cancer and its precursor lesion, high-grade vulvar intraepithelial neoplasia (VIN), and 61 controls, matched for age and community of residence. It was hypothesized that this small, isolated population may exhibit increased autozygosity, implicating recessive effects as a possible mechanism for increased susceptibility to vulvar cancer. Methods Genotyping data from saliva samples were used to identify runs of homozygosity (ROH) in order to calculate estimates of genome-wide homozygosity. Results No evidence of an effect of genome-wide homozygosity on vulvar cancer and VIN in East Arnhem women was found, nor was any individual ROH found to be significantly associated with case status. This study found further evidence supporting an association between previous diagnosis of CIN and diagnosis of vulvar cancer or VIN, but found no association with any other medical history variable. Conclusions These findings do not eliminate the possibility of genetic risk factors being involved in this cancer cluster, but rather suggest that alternative analytical strategies and genetic models should be explored.
Resumo:
Single nucleotide polymorphisms (SNPs) have been classically used for dissecting various human complex disorders using candidate gene studies. During the last decade, large scale SNP analysis i.e. genome-wide association studies (GWAS) have provided an agnostic approach to identify possible genetic loci associated with heterogeneous disease such as cancer susceptibility, prognosis of survival or drug response. Further, the advent of new technologies, including microarray based genotyping as well as high throughput next generation sequencing has opened new avenues for SNPs to be used in clinical practice. It is speculated that the utility of SNPs to understand the mechanisms, biology of variable drug response and ultimately treatment individualization based on the individual’s genome composition will be indispensable in the near future. In the current review, we discuss the advantages and disadvantages of the clinical utility of genetic variants in disease risk-prediction, prognosis, clinical outcome and pharmacogenomics. The lessons and challenges for the utility of SNP based biomarkers are also discussed, including the need for additional functional validation studies.
Resumo:
Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case-control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 × 10-5), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 × 10-4) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 × 10-9). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification.
Resumo:
Cancer is the second leading cause of death with 14 million new cases and 8.2 million cancer-related deaths worldwide in 2012. Despite the progress made in cancer therapies, neoplastic diseases are still a major therapeutic challenge notably because of intra- and inter-malignant tumour heterogeneity and adaptation/escape of malignant cells to/from treatment. New targeted therapies need to be developed to improve our medical arsenal and counter-act cancer progression. Human kallikrein-related peptidases (KLKs) are secreted serine peptidases which are aberrantly expressed in many cancers and have great potential in developing targeted therapies. The potential of KLKs as cancer biomarkers is well established since the demonstration of the association between KLK3/PSA (prostate specific antigen) levels and prostate cancer progression. In addition, a constantly increasing number of in vitro and in vivo studies demonstrate the functional involvement of KLKs in cancer-related processes. These peptidases are now considered key players in the regulation of cancer cell growth, migration, invasion, chemo-resistance, and importantly, in mediating interactions between cancer cells and other cell populations found in the tumour microenvironment to facilitate cancer progression. These functional roles of KLKs in a cancer context further highlight their potential in designing new anti-cancer approaches. In this review, we comprehensively review the biochemical features of KLKs, their functional roles in carcinogenesis, followed by the latest developments and the successful utility of KLK-based therapeutics in counteracting cancer progression.
Resumo:
MicroRNAs (miRNAs) are small non-coding RNAs of 20 nt in length that are capable of modulating gene expression post-transcriptionally. Although miRNAs have been implicated in cancer, including breast cancer, the regulation of miRNA transcription and the role of defects in this process in cancer is not well understood. In this study we have mapped the promoters of 93 breast cancer-associated miRNAs, and then looked for associations between DNA methylation of 15 of these promoters and miRNA expression in breast cancer cells. The miRNA promoters with clearest association between DNA methylation and expression included a previously described and a novel promoter of the Hsa-mir-200b cluster. The novel promoter of the Hsa-mir-200b cluster, denoted P2, is located 2 kb upstream of the 5′ stemloop and maps within a CpG island. P2 has comparable promoter activity to the previously reported promoter (P1), and is able to drive the expression of miR-200b in its endogenous genomic context. DNA methylation of both P1 and P2 was inversely associated with miR-200b expression in eight out of nine breast cancer cell lines, and in vitro methylation of both promoters repressed their activity in reporter assays. In clinical samples, P1 and P2 were differentially methylated with methylation inversely associated with miR-200b expression. P1 was hypermethylated in metastatic lymph nodes compared with matched primary breast tumours whereas P2 hypermethylation was associated with loss of either oestrogen receptor or progesterone receptor. Hypomethylation of P2 was associated with gain of HER2 and androgen receptor expression. These data suggest an association between miR-200b regulation and breast cancer subtype and a potential use of DNA methylation of miRNA promoters as a component of a suite of breast cancer biomarkers.