987 resultados para Bussone, Francesco, ca. 1385-1432
Resumo:
Modern variability in upwelling off southern Indonesia is strongly controlled by the Australian-Indonesian monsoon and the El Niño-Southern Oscillation, but multi-decadal to centennial-scale variations are less clear. We present high-resolution records of upper water column temperature, thermal gradient and relative abundances of mixed layer- and thermocline-dwelling planktonic foraminiferal species off southern Indonesia for the past two millennia that we use as proxies for upwelling variability. We find that upwelling was generally strong during the Little Ice Age (LIA) and weak during the Medieval Warm Period (MWP) and the Roman Warm Period (RWP). Upwelling is significantly anti-correlated to East Asian summer monsoonal rainfall and the zonal equatorial Pacific temperature gradient. We suggest that changes in the background state of the tropical Pacific may have substantially contributed to the centennial-scale upwelling trends observed in our records. Our results implicate the prevalence of an El Niño-like mean state during the LIA and a La Niña-like mean state during the MWP and the RWP.
Resumo:
Laser ablation inductively coupled plasma-mass spectrometry microanalysis of fossil and live Globigerinoides ruber from the eastern Indian Ocean reveals large variations of Mg/Ca composition both within and between individual tests from core top or plankton pump samples. Although the extent of intertest and intratest compositional variability exceeds that attributable to calcification temperature, the pooled mean Mg/Ca molar values obtained for core top samples between the equator and >30°S form a strong exponential correlation with mean annual sea surface temperature (Mg/Ca mmol/mol = 0.52 exp**0.076SST°C, r**2 = 0.99). The intertest Mg/Ca variability within these deep-sea core top samples is a source of significant uncertainty in Mg/Ca seawater temperature estimates and is notable for being site specific. Our results indicate that widely assumed uncertainties in Mg/Ca thermometry may be underestimated. We show that statistical power analysis can be used to evaluate the number of tests needed to achieve a target level of uncertainty on a sample by sample case. A varying bias also arises from the presence and varying mix of two morphotypes (G. ruber ruber and G. ruber pyramidalis), which have different mean Mg/Ca values. Estimated calcification temperature differences between these morphotypes range up to 5°C and are notable for correlating with the seasonal range in seawater temperature at different sites.
Resumo:
Paired Mg/Ca and d18O measurements on planktonic foraminiferal species (G. ruber white, G. ruber pink, G. sacculifer, G. conglobatus, G. aequilateralis, O. universa, N. dutertrei, P. obliquiloculata, G. inflata, G. truncatulinoides, G. hirsuta, and G. crassaformis) from a 6-year sediment trap time series in the Sargasso Sea were used to define the sensitivity of foraminiferal Mg/Ca to calcification temperature. Habitat depths and calcification temperatures were estimated from comparison of d18O of foraminifera with equilibrium calcite, based on historical temperature and salinity data. When considered together, Mg/Ca (mmol/mol) of all species, except two, show a significant (r = 0.93) relationship with temperature (T °C) of the form Mg/Ca = 0.38 (±0.02) exp 0.090 (±0.003)T, equivalent to a 9.0 ± 0.3% change in Mg/Ca for a 1°C change in temperature. Small differences exist in calibrations between species and between different size fractions of the same species. O. universa and G. aequilateralis have higher Mg/Ca than other species, and in general, data can be best described with the same temperature sensitivity for all species and pre-exponential constants in the sequence O. universa > G. aequilateralis = G. bulloides > G. ruber = G. sacculifer = other species. This approach gives an accuracy of ±1.2°C in the estimation of calcification temperature. The 9% sensitivity to temperature is similar to published studies from culture and core top calibrations, but differences exist from some literature values of pre-exponential constants. Different cleaning methodologies and artefacts of core top dissolution are probably implicated, and perhaps environmental factors yet understood. Planktonic foraminiferal Mg/Ca temperature estimates can be used for reconstructing surface temperatures and mixed and thermocline temperatures (using G. ruber pink, G. ruber white, G. sacculifer, N. dutertrei, P. obliquiloculata, etc.). The existence of a single Mg thermometry equation is valuable for extinct species, although use of species-specific equations will, where statistically significant, provide more accurate evaluation of Mg/Ca paleotemperature.
Resumo:
Boron isotope systematics indicate that boron incorporation into foraminiferal CaCO3 is determined by the partition coefficient, KD = [B/Ca](CaCO3)/[B(OH)4**-/HCO3**-](seawater), and [B(OH)4?/HCO3?](seawater), providing, in principle, a method to estimate seawater pH and PCO2. We have measured B/Ca ratios in Globigerina bulloides and Globorotaliainflata for a series of core tops from the North Atlantic and the Southern Ocean and in Globigerinoides ruber (white) from Ocean Drilling Program (ODP) site 668B on the Sierra Leone Rise in the eastern equatorial Atlantic. B/Ca ratios in these species of planktonic foraminifera seem unaffected by dissolution on the seafloor. KD shows a strong species-specific dependence on calcification temperature, which can be corrected for using the Mg/Ca temperature proxy. A preliminary study of G. inflata from Southern Ocean sediment core CHAT 16K suggests that temperature-corrected B/Ca was ~30% higher during the last glacial. Correspondingly, pH was 0.15 units higher and aqueous PCO2 was 95 ?atm lower at this site at the Last Glacial Maximum. The covariation between reconstructed PCO2 and the atmospheric pCO2 from the Vostok ice core demonstrates the feasibility of using B/Ca in planktonic foraminifera for reconstructing past variations in pH and PCO2.
Resumo:
During three to four d18O cycles (determined on Globigerinoides ruber), more positive d18O (= higher global ice volume) values correlated with higher Globorotalia menardii percentages, total numbers of benthic foraminifers, number of benthic foraminifer species, and the percent of total foraminifers composed of benthic foraminifers. During the same intervals, barite and insoluble residues also generally recorded higher values; however, there was no clear evidence of systematic variation in cadmium/calcium ratios (in benthic foraminifers). Maximum percentages of Globigerinoides sacculifer and Globigerinoides ruber correlate with more negative d18O (= lower global ice volume) values, although they sometimes appear to lead the d18O changes by < =4,000 yr. The increase in percentage of the tropical "divergence" planktonic foraminifer species G. menardii and the reduction of the "nondivergence" tropical species G. ruber and G. sacculifer at times of inferred ice growth is attributed to periodic intensification of divergence associated with the Equatorial Counter Current. Barite and insoluble residue sedi- mentation at the site also generally show a relative increase at those times.