962 resultados para Burrow fragments, pyritized
Resumo:
In the experiment of nuclear reaction, it is important to measure the mass, charge, energy and emitted direction of particles. For multiparameter measurement, we must use a detector or a group of detectors which can give the time, energy, and position information. The Large Area position sensitive Ionization Chamber(LAIC) is one of the eight experiment terminals of HIRFL. It is built for researching nuclear reactions from low energy to intermediate energy. It is an excellent equipment for energy measurements and atomic number identification of emitted fragments in this energy region. It is also designed to give the time and position information of the emitted fragments by itself. Obviously, an IC can not supply a good timing signal. Moreover, the mechanical installation is different from the original design by some other reasons. In this case, it is not enough to obtain the correct direction information of the emitted fragments. To obtain good timing signals and the correct direction information, some modifications must be made. It is well known that a PPAC can give us excellent timing signals. It also can be easily built as a position sensitive detector. For this reason, a specially designed PPAC is installed in the entrance of the LAIC. For the different purposes, two types of PPACs were designed and tested. Both are OCTPSACs (OCTunit one dimension Position Sensitive Avalanche Counter). In this paper, both OCTPSACs will be introduced. Based on the requirements of the LAIC, the OCTPSACs consist of eight position sensitive PPACs. Each PPAC has an anode and a cathode. In both cases, the sizes are same. But different type of cathodes are used. In one type of OCTPSAC, its cathode is made of wire plane. It consists of gold-plated tungsten wires with the diameter of 20μm, spaced 0.5 mm apart from each other. The anode is a mylar foil which was evaporated by gold layer with the thickness of 50μg/cm~2 mounted on a printed plate in the shape of rectangle. the thickness of mylar foil is 1.5μm. The gap between anode and cathode is 3mm. The performance of the OCTPSAC has been tested by using a ~(252)Cf source in flowing isobutylene gas at the pressure of 3.4mb. The intrinsic time resolution of 289ps and position resolution of 2 mm have been obtained. In another type of OCTPSAC, the cathode is made of mylar foil, which is composed of gold strip by vacuume evaporation method with a special mask on the mylar foil. The thickness and the width of the gold strip is 50μg/cm~2 and 1.7mm. The strips are spaced 0.3 mm apart from each other. The anode is the same as the former type. We have obtained the time resolution of 296ps and position resolution of 2mm by using ~(241)Am-a source when the gas pressure is 6 mb and high voltage is 600V. The working gas is heptane
Resumo:
We have developed a new experimental system based on a microfluidic chip to determine severe acute respiratory syndrome coronavirus (SARS-Cov). The system includes a laser-induced fluorescence microfluidic chip analyzer, a glass microchip for both polymerase chain reaction (PCR) and capillary electrophoresis, a chip thermal cycler based on dual Peltier thermoelectric elements, a reverse transcription-polymerase chain reaction (RT-PCR) SARS diagnostic kit, and a DNA electrophoretic sizing kit. The system allows efficient cDNA amplification of SARS-CoV followed by electrophoretic sizing and detection on the same chip. To enhance the reliability of RT-PCR on SARS-CoV detection, duplex PCR was developed on the microchip. The assay was carried out on a home-made microfluidic chip system. The positive and the negative control were cDNA fragments of SARS-CoV and parainfluenza virus, respectively. The test results showed that 17 positive samples were obtained among 18 samples of nasopharyngeal swabs from clinically diagnosed SARS patients. However, 12 positive results from the same 18 samples were obtained by the conventional RT-PCR with agarose gel electrophoresis detection. The SARS virus species can be analyzed with high positive rate and rapidity on the microfluidic chip system.