991 resultados para Brunelleschi, Filippo, 1377-1446.
Resumo:
Using data from a self-administered survey of 1,017 households we assess the long-term impact of establishing a special economic zone, on those who are exogenously selected to be displaced. We find those who are displaced suffer from lower land compensation and lack of adequate property rights. There is also some evidence of lower labour market participation among those who are displaced. However, in the long term, across measurable welfare indicators, we do not find that displaced households are significantly different from other households. One source of this resilience is through employment at the special economic zone – which is higher among displaced households compared to other households. Another factor that contributed to the absence of differences is spill-over effects; which made access to employment, education and other facilities about homogenous across displaced and non-displaced households.
Resumo:
エジプトではムバーラク大統領の国内政策と域内におけるエジプトの影響力低迷が引き金となって、2011年1月25日に抗議運動起こった。抗議運動はエジプト全土に拡がり、18日間の民衆的な反体制運動によってムバーラクは軍に見捨てられ、失脚に追い込まれた。この民衆蜂起によって警察は街頭から撤退し、シナイ半島の警察署は焼き放たれ、ムバーラクが率いていた国民民主党の建物や国内治安機関の本部は襲撃され、国家機関が数ヶ月にもわたって機能不全となり、ムバーラク体制の崩壊は国内的な混乱を招くこととなった。振り返れば、エジプトでの政治的大変動は社会的な革命へと展開することはできなかった。その理由は独裁体制からの移行を先導できる組織化された反体制勢力が存在しなかったためである。民衆による抗議運動は一時的に体制を転覆できても旧体制のエリートを分裂させることはできず、軍の影響下にある体制の復活を防ぐこともできなかった。2011年以降のエジプトは現在まで混乱状態に陥ったままであるが、1カ月に及ぶエジプト軍最高評議会(SCAF)の暫定統治、エジプト史上初の自由な大統領選挙によって選出された文民大統領のムルスィーによる一年余りの統治、そして2013年7月の軍事クーデターによって権力の座に就いたスィースィーの統治といった過程で、民衆蜂起がエジプトの外交関係に及ぼした影響はごく僅かであった。本稿は、現在のエジプトの外交政策が2011年の革命にほとんど影響を受けていないのはなぜか、またエジプトの統治者たちが政権の正統性、体制の強化および政治的な安定性を確保し、国内的な課題に対処するための戦略をいかに策定しているのかを説明することを試みる。本稿での主張は、ムバーラク以降のエジプトが体制の強化と保全のために外交政策を進めており、国内的な混乱によって地域内アクターへの依存度が高まっていることである。
Resumo:
Some requirements for engineering programmes, such as an ability to use the techniques, skills and modern engineering tools necessary for engineering practice, as well as an understanding of professional and ethical responsibility or an ability to communicate effectively, need new activities designed for measuring students’ progress. Negotiations take place continuously at any stage of a project and, so, the ability of engineers and managers to effectively carry out a negotiation is crucial for the success or failure of projects and businesses. Since it involves communication between individuals motivated to come together in an agreement for mutual benefit, it can be used to enhance these personal abilities. The main objective of this study was to evaluate the adequacy of mixing playing sessions and theory to maximise the students’ strategic vision in combination with negotiating skills. Results show that the combination of playing with theoretical training teaches students to strategise through analysis and discussion of alternatives. The outcome is then more optimised.
Resumo:
This paper presents an alternative Forward Error Correction scheme, based on Reed-Solomon codes, with the aim of protecting the transmission of RTP-multimedia streams: the inter-packet symbol approach. This scheme is based on an alternative bit structure that allocates each symbol of the Reed-Solomon code in several RTP-media packets. This characteristic permits to exploit better the recovery capability of Reed-Solomon codes against bursty packet losses. The performance of our approach has been studied in terms of encoding/decoding time versus recovery capability, and compared with other proposed schemes in the literature. The theoretical analysis has shown that our approach allows the use of a lower size of the Galois Fields compared to other solutions. This lower size results in a decrease of the required encoding/decoding time while keeping a comparable recovery capability. Finally, experimental results have been carried out to assess the performance of our approach compared to other schemes in a simulated environment, where models for wireless and wireline channels have been considered.
Resumo:
In this work we propose a method to accelerate time dependent numerical solvers of systems of PDEs that require a high cost in computational time and memory. The method is based on the combined use of such numerical solver with a proper orthogonal decomposition, from which we identify modes, a Galerkin projection (that provides a reduced system of equations) and the integration of the reduced system, studying the evolution of the modal amplitudes. We integrate the reduced model until our a priori error estimator indicates that our approximation in not accurate. At this point we use again our original numerical code in a short time interval to adapt the POD manifold and continue then with the integration of the reduced model. Application will be made to two model problems: the Ginzburg-Landau equation in transient chaos conditions and the two-dimensional pulsating cavity problem, which describes the motion of liquid in a box whose upper wall is moving back and forth in a quasi-periodic fashion. Finally, we will discuss a way of improving the performance of the method using experimental data or information from numerical simulations
Resumo:
A local proper orthogonal decomposition (POD) plus Galerkin projection method was recently developed to accelerate time dependent numerical solvers of PDEs. This method is based on the combined use of a numerical code (NC) and a Galerkin sys- tem (GS) in a sequence of interspersed time intervals, INC and IGS, respectively. POD is performed on some sets of snapshots calculated by the numerical solver in the INC inter- vals. The governing equations are Galerkin projected onto the most energetic POD modes and the resulting GS is time integrated in the next IGS interval. The major computa- tional e®ort is associated with the snapshots calculation in the ¯rst INC interval, where the POD manifold needs to be completely constructed (it is only updated in subsequent INC intervals, which can thus be quite small). As the POD manifold depends only weakly on the particular values of the parameters of the problem, a suitable library can be con- structed adapting the snapshots calculated in other runs to drastically reduce the size of the ¯rst INC interval and thus the involved computational cost. The strategy is success- fully tested in (i) the one-dimensional complex Ginzburg-Landau equation, including the case in which it exhibits transient chaos, and (ii) the two-dimensional unsteady lid-driven cavity problem
Resumo:
Se desarrollan varias técnicas basadas en descomposición ortogonal propia (DOP) local y proyección de tipo Galerkin para acelerar la integración numérica de problemas de evolución, de tipo parabólico, no lineales. Las ideas y métodos que se presentan conllevan un nuevo enfoque para la modelización de tipo DOP, que combina intervalos temporales cortos en que se usa un esquema numérico estándard con otros intervalos temporales en que se utilizan los sistemas de tipo Galerkin que resultan de proyectar las ecuaciones de evolución sobre la variedad lineal generada por los modos DOP, obtenidos a partir de instantáneas calculadas en los intervalos donde actúa el código numérico. La variedad DOP se construye completamente en el primer intervalo, pero solamente se actualiza en los demás intervalos según las dinámicas de la solución, aumentando de este modo la eficiencia del modelo de orden reducido resultante. Además, se aprovechan algunas propiedades asociadas a la dependencia débil de los modos DOP tanto en la variable temporal como en los posibles parámetros de que pueda depender el problema. De esta forma, se aumentan la flexibilidad y la eficiencia computacional del proceso. La aplicación de los métodos resultantes es muy prometedora, tanto en la simulación de transitorios en flujos laminares como en la construcción de diagramas de bifurcación en sistemas dependientes de parámetros. Las ideas y los algoritmos desarrollados en la tesis se ilustran en dos problemas test, la ecuación unidimensional compleja de Ginzburg-Landau y el problema bidimensional no estacionario de la cavidad. Abstract Various ideas and methods involving local proper orthogonal decomposition (POD) and Galerkin projection are presented aiming at accelerating the numerical integration of nonlinear time dependent parabolic problems. The proposed methods come from a new approach to the POD-based model reduction procedures, which combines short runs with a given numerical solver and a reduced order model constructed by expanding the solution of the problem into appropriate POD modes, which span a POD manifold, and Galerkin projecting some evolution equations onto that linear manifold. The POD manifold is completely constructed from the outset, but only updated as time proceeds according to the dynamics, which yields an adaptive and flexible procedure. In addition, some properties concerning the weak dependence of the POD modes on time and possible parameters in the problem are exploited in order to increase the flexibility and efficiency of the low dimensional model computation. Application of the developed techniques to the approximation of transients in laminar fluid flows and the simulation of attractors in bifurcation problems shows very promising results. The test problems considered to illustrate the various ideas and check the performance of the algorithms are the onedimensional complex Ginzburg-Landau equation and the two-dimensional unsteady liddriven cavity problem.
Resumo:
Some basic ideas are presented for the construction of robust, computationally efficient reduced order models amenable to be used in industrial environments, combined with somewhat rough computational fluid dynamics solvers. These ideas result from a critical review of the basic principles of proper orthogonal decomposition-based reduced order modeling of both steady and unsteady fluid flows. In particular, the extent to which some artifacts of the computational fluid dynamics solvers can be ignored is addressed, which opens up the possibility of obtaining quite flexible reduced order models. The methods are illustrated with the steady aerodynamic flow around a horizontal tail plane of a commercial aircraft in transonic conditions, and the unsteady lid-driven cavity problem. In both cases, the approximations are fairly good, thus reducing the computational cost by a significant factor.