990 resultados para Biomass, wet mass per area
Resumo:
Data are presented on content and composition of hydrocarbons (HC) (aliphatic AHC and polyaromatic PAH) in filtered particulate matter and in the surface layer of bottom sediments from the northern shelf of the Caspian Sea and related to data on their contents in the Volga River estuary. Because of transformation and precipitation of anthropogenic and natural compounds, HC composition in particulate matter and bottom sediments undergoes transformations caused by mixing of fresh and saline waters (in bottom sediments, within concentration ranges 70.4-4557.9 µg/g for AHC and 3.8-4800 ng/g for PAH). It was found that the greatest concentrating of HC proceeds in the region of the avalanche sedimentation, and their contents are independent of grain-size types of bottom sediments. Anthropogenic HC (oil and pyrogenous) do not get over the marginal filter of the Volga River and do not pass to the open part of the sea.
Resumo:
The amount and the accumulation rate of quartz were measured in 33 samples from Hole 576A. The amount and source of mineral aerosol being deposited in the northwest Pacific during the Cenozoic are evaluated using these data. When Hole 576A is compared to a Cenozoic record in the central North Pacific, a strong uniformity in the composition of the mineral aerosol across the North Pacific is seen. The data suggest that Hole 576A entered the influence of the westerlies about 15 m.y. ago and that since that time the rates of sediment deposition have increased. Only the dramatic change in quartz accumulation 2.5 m.y. ago can be clearly related to a climatic event, but a gradual increase in quartz accumulation through the Miocene and early Pliocene is probably a result of increasing Northern Hemisphere aridity and intensified atmospheric activity associated with global cooling during the interval.
Resumo:
Material was collected in the Ob River estuary and the adjacent shallow Kara Sea shelf between 71°14.0'N and 75°33.0'N at the end of September 2007. Latitudinal zonation in phytoplankton distribution was demonstrated; this zonation was determined by changes in salinity and concentration of nutrients. Characteristic of the phytocenosis in the southern desalinated zone composed of freshwater diatom and green algae species were high population density (1500000 cells/l), biomass (210 ?g C/l), chlorophyll concentration (4.5 ?g/l), and uniform distribution in the water column. High primary production (~40 ?g C/l/day) was recorded in the upper 1.5 m layer. The estuarine frontal zone located to the north had a halocline at depth 3-5 m. Freshwater species with low abundance (250000 cells/l), biomass (24 ?g C/l), and chlorophyll concentration (1.5 ?g/l) dominated above the halocline. Marine diatom algae, dinoflagellates, and autotrophic flagellates formed a considerable part of the phytocenosis below the halocline; community characteristics were two-fold lower as compared with the upper layer. Maximal values of primary production (~10 ?g C/l/day) were recorded in the upper 1.5 m layer. The phytocenosis in the seaward zone was formed by marine alga species and was considerably poorer as compared with the frontal zone. Assimilation rates of carbon per chlorophyll a at the end of the vegetation season within the studied area were low, average 0.4-1.0 ?g C/?g Chl/hour in the upper layer and 0.03-0.1 ?g C/?g Chl/hour below the pycnocline.
Resumo:
Agricultural pesticide use has increased worldwide during the last several decades, but the long-term fate, storage, and transfer dynamics of pesticides in a changing environment are poorly understood. Many pesticides have been progressively banned, but in numerous cases, these molecules are stable and may persist in soils, sediments, and ice. Many studies have addressed the question of their possible remobilization as a result of global change. In this article, we present a retro-observation approach based on lake sediment records to monitor micropollutants and to evaluate the long-term succession and diffuse transfer of herbicides, fungicides, and insecticide treatments in a vineyard catchment in France. The sediment allows for a reliable reconstruction of past pesticide use through time, validated by the historical introduction, use, and banning of these organic and inorganic pesticides in local vineyards. Our results also revealed how changes in these practices affect storage conditions and, consequently, the pesticides' transfer dynamics. For example, the use of postemergence herbicides (glyphosate), which induce an increase in soil erosion, led to a release of a banned remnant pesticide (dichlorodiphenyltrichloroethane, DDT), which had been previously stored in vineyard soil, back into the environment. Management strategies of ecotoxicological risk would be well served by recognition of the diversity of compounds stored in various environmental sinks, such as agriculture soil, and their capability to become sources when environmental conditions change.