982 resultados para Biology, Physiology
Resumo:
BACKGROUND Diabetes mellitus (DM) is increasing in men of reproductive age. Despite this, the prevalence of diabetes in men attending fertility clinics is largely unknown. Furthermore, studies examining the effects of DM on sperm fertility potential have been limited to conventional semen analysis. METHODS Conventional semen analysis (semen volume, sperm count, motility and morphology) was performed for 27 diabetic (mean age 34 +/- 2 years) and 29 non-diabetic subjects (control group, men undergoing routine infertility investigations, mean age 33 +/- 1 years). Nuclear DNA (nDNA) fragmentation was assessed using the alkaline Comet assay and mitochondrial DNA (mtDNA) deletions by Long-PCR. RESULTS Other than a small, but significant, reduction in semen volume in diabetic men (2.6 versus 3.3 ml; P <0.05), conventional semen parameters did not differ significantly from control subjects. Diabetic subjects had significantly higher mean nDNA fragmentation (53 versus 32%; P <0.0001) and median number of mtDNA deletions (4 versus 3; P <0.05) compared with control subjects. CONCLUSIONS Diabetes is associated with increased sperm nuclear and mtDNA damage that may impair the reproductive capability of these men.
Resumo:
BACKGROUND: Diabetics have a significantly higher percentage of sperm with nuclear DNA (nDNA) fragmentation and increased levels of advanced glycation end products (AGEs), in their testis, epididymis and sperm. As the receptor for AGEs (RAGE) is important to oxidative stress and cell dysfunction, we hypothesise, that it may be involved in sperm nDNA damage. METHODS: Immunohistochemistry was performed to determine the presence of RAGE in the human testis and epididymis. A comparison of the receptor's incidence and localisation on sperm from 10 diabetic and 11 non-diabetic men was conducted by blind semi-quantitative assessment of the immunostaining. ELISA analysis ascertained RAGE levels in seminal plasma and sperm from 21 diabetic and 31 non-diabetic subjects. Dual labelling immunolocalisation was employed to evaluate RAGE's precise location on the sperm head. RESULTS: RAGE was found throughout the testis, caput epididymis, particularly the principle cells apical region, and on sperm acrosomes. The number of sperm displaying RAGE and the overall protein amount found in sperm and seminal plasma were significantly higher in samples from diabetic men (p
Resumo:
Fasciola hepatica secretes cathepsin L proteases that facilitate the penetration of the parasite through the tissues of its host, and also participate in functions such as feeding and immune evasion. The major proteases, cathepsin L1 (FheCL1) and cathepsin L2 (FheCL2) are members of a lineage that gave rise to the human cathepsin Ls, Ks and Ss, but while they exhibit similarities in their substrate specificities to these enzymes they differ in having a wider pH range for activity and an enhanced stability at neutral pH. There are presently 13 Fasciola cathepsin L cDNAs deposited in the public databases representing a gene family of at least seven distinct members, although the temporal and spatial expression of each of these members in the developmental stage of F. hepatica remains unclear. Immunolocalisation and in situ hybridisation studies, using antibody and DNA probes, respectively, show that the vast majority of cathepsin L gene expression is carried out in the epithelial cells lining the parasite gut. Within these cells the enzyme is packaged into secretory vesicles that release their contents into the gut lumen for the purpose of degrading ingested host tissue and blood. Liver flukes also express a novel multi-domain cystatin that may be involved in the regulation of cathepsin L activity. Vaccine trials in both sheep and cattle with purified native FheCL1 and FheCL2 have shown that these enzymes can induce protection, ranging from 33 to 79%, to experimental challenge with metacercariae of F. hepatica, and very potent anti-embryonation/hatch rate effects that would block parasite transmission. In this article we review the vaccine trials carried out over the past 8 years, the role of antibody and T cell responses in mediating protection and discuss the prospects of the cathepsin Ls in the development of first generation recombinant liver fluke vaccines. Author Keywords: Helminths; Trematodes; Parasites; Cathepsins; Proteases; Vaccines; Immunology; Biochemistry
Resumo:
Background: Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial oxidative stress and hypertrophic remodeling. Up-regulation of the cardiomyocyte adrenomedullin (AM) / intermedin (IMD) receptor signaling cascade is also apparent in NO-deficient cardiomyocytes: augmented expression of AM and receptor activity modifying proteins RAMP2 and RAMP3 is prevented by blood pressure normalization while that of RAMP1 and intermedin (IMD) is not, indicating that the latter is regulated by a pressure-independent mechanism. Aims: to verify the ability of an anti-oxidant intervention to normalize cardiomyocyte oxidant status and to investigate the influence of such an intervention on expression of AM, IMD and their receptor components in NO-deficient cardiomyocytes. Methods: NO synthesis inhibitor, NG-nitro-L-arginine methyl ester (L-NAME, 35mg/kg/day) was given to rats for 8 weeks, with/without con-current administration of antioxidants (Vitamin C (25mg/kg/day) and Tempol (25mg/kg/day)). Results: In left ventricular cardiomyocytes isolated from L-NAME treated rats, increased oxidative stress was indicated by augmented (3.6 fold) membrane protein oxidation, enhanced expression of catalytic and regulatory subunits of pro-oxidant NADPH oxidases (NOX1, NOX2) and compensatory increases in expression of anti-oxidant glutathione peroxidase and Cu/Zn superoxide dismutases (SOD1, SOD3). Vitamin C plus Tempol did not reduce systolic blood pressure but normalized augmented plasma levels of IMD, but not of AM, and in cardiomyocytes: (i) abolished increased membrane protein oxidation; (ii) normalized augmented expression of prepro-IMD and RAMP1, but not prepro-AM, RAMP2 and RAMP3; (iii) attenuated (by 42%) increased width and normalized expression of hypertrophic markers, skeletal-�-actin and prepro-endothelin-1 similarly to blood pressure normalization but in contrast to blood pressure normalization did not attenuate augmented brain natriuretic peptide (BNP) expression. Conclusion: normalization specifically of augmented IMD/RAMP1 expression in NO-deficient cardiomyocytes by antioxidant intervention in the absence of blood pressure reduction indicates that these genes are likely to be induced directly by myocardial oxidative stress. Although oxidative stress contributed to cardiomyocyte hypertrophy, induction of IMD and RAMP1 is unlikely to be secondary to cardiomyocyte hypertrophy.
Resumo:
Local control of blood flow to the photoreceptors and associated neurons in the retina is largely achieved through changes in tone within the choroidal and retinal arterioles. This is primarily achieved through changes in [Ca2+] within the smooth muscle of these vessels, which regulates cell contraction and vascular constriction. Here we review some aspects of the cell physiology involved in these Ca2+-signaling processes, with particular emphasis on the molecular mechanisms involved. Ca2+-influx across the plasma membrane can occur via a variety of Ca2+-channels, including voltage-operated, store-operated, and receptor-operated channels. Ca2+ may also be released from intracellular stores via RyR-, or IP3R-gated channels in the SR membrane. Using high-speed confocal Ca2+-imaging, we have also demonstrated that the resulting signals are far from homogeneous, with spontaneous activity in retinal arterioles being characterized by both localized Ca2+-sparks and more global Ca2+-waves and oscillations. These signals may be specifically and differentially targeted, for example, to Ca2+-sensitive ion channels (stimulus-excitation coupling), or pathways regulating contraction (stimulus-contraction coupling). Exploring the role of changes in such targeting in disease states will provide exciting opportunities for future research.
Resumo:
Control of ocular blood flow occurs predominantly at the level of the retinal and choroidal arterioles. The present article provides an overview of the Ca2 + handling mechanisms and plasmalemmal ion channels involved in the regulation of retinal and choroidal arteriolar smooth muscle tone. Increases in global intracellular free Ca2 + ([Ca2 +]i) involve multiple mechanisms, including agonist-dependent release of Ca2 + from intracellular stores through activation of the inositol trisphosphate (IP3) pathway. Ca2 + enters by voltage-dependent L-type Ca2 + channels and novel dihydropyridine-sensitive store-operated nonselective cation channels. Ca2 + extrusion is mediated by plasmalemmal Ca2 +-ATPases and through Na+/Ca2+ exchange. Local Ca2 + transients (Ca2 + sparks) play an important excitatory role, acting as the building blocks for more global Ca2 + signals that can initiate vasoconstriction. K+ and Cl- channels may also affect cell function by modulating membrane potential. The precise contribution of each of these mechanisms to the regulation of retinal and choroidal perfusion in vivo warrants future investigation.
Resumo:
The cellular localization of the activin-binding protein, follistatin, in the rat testis has been a matter of some controversy with different investigators claiming that Sertoli cells, Leydig cells or germ cells are the primary cell types containing this protein. The localization of mRNA encoding follistatin was re-examined using reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization as well as the distribution of follistatin by immunohistochemistry. The results demonstrate that mRNA encoding follistatin is located in many germ cells including type B spermatogonia, primary spermatocytes with the exception of the late leptotene and early zygotene stages, and spermatids at steps 1 to 11. It is also found in Sertoli cells and endothelial cells but not in Leydig cells. Immunohistochemistry, using two different antisera to follistatin, showed that this protein was localized to spermatogonia, primary spermatocytes at all stages except the zygotene stage, spermatids at all stages and to endothelial cells and Leydig cells in the intratubular regions. The failure to detect mRNA for follistatin in Leydig cells using RT-PCR and in situ hybridization suggests that the immunohistochemical localization in these cells reflects binding of follistatin produced elsewhere. The widespread localization of follistatin, taken together with its capacity to neutralize the actions of activin, may indicate that follistatin modulates a range of testicular actions of activin, many of which remain unknown.