976 resultados para Biology, Molecular|Biology, Genetics
Resumo:
"Appendix: Translation of Mendel's paper, Experiments in plant-hybridization": p. 313-353.
Resumo:
Includes index.
Resumo:
Twelve years ago our understanding of ratoon stunting disease (RSD) was confined almost exclusively to diagnosis of the disease and control via farm hygiene, with little understanding of the biology of the interaction between the causal agent (Leifsonia xyli subsp. xyli) and the host plant sugarcane (Saccharum spp. hybrids). Since then, research has focused on developing the molecular tools to dissect L. xyli subsp. xyli, so that better control strategies can be developed to prevent losses from RSD. Within this review, we give a brief overview of the progression in research on L. xyli subsp. xyli and highlight future challenges. After a brief historical background on RSD, we discuss the development of molecular tools such as transformation and transposon mutagenesis and discuss the apparent lack of genetic diversity within the L. xyli subsp. xyli world population. We go on to discuss the sequencing of the genome of L. xyli subsp. xyli, describe the key findings and suggest some future research based on known deficiencies that will capitalise on this tremendous knowledge base to which we now have access.
Resumo:
The flood of new genomic sequence information together with technological innovations in protein structure determination have led to worldwide structural genomics (SG) initiatives. The goals of SG initiatives are to accelerate the process of protein structure determination, to fill in protein fold space and to provide information about the function of uncharacterized proteins. In the long-term, these outcomes are likely to impact on medical biotechnology and drug discovery, leading to a better understanding of disease as well as the development of new therapeutics. Here we describe the high throughput pipeline established at the University of Queensland in Australia. In this focused pipeline, the targets for structure determination are proteins that are expressed in mouse macrophage cells and that are inferred to have a role in innate immunity. The aim is to characterize the molecular structure and the biochemical and cellular function of these targets by using a parallel processing pipeline. The pipeline is designed to work with tens to hundreds of target gene products and comprises target selection, cloning, expression, purification, crystallization and structure determination. The structures from this pipeline will provide insights into the function of previously uncharacterized macrophage proteins and could lead to the validation of new drug targets for chronic obstructive pulmonary disease and arthritis. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Since the earliest descriptions of the disease, senile plaques (SP) and neurofibrillary tangles (NFT) have been regarded as the pathological 'hallmarks' of Alzheimer's disease (AD). Whether or not SP and NFT are sufficient cause to explain the neurodegeneration of AD is controversial. The major molecular constituents of these lesions, viz., beta-amyloid (Ass) and tau, have played a defining role both in the diagnosis of the disease and in studies of pathogenesis. The molecular biology of SP and NFT, however, is complex with many chemical constituents. An individual constituent could be the residue of a pathogenic gene mutation, result from cellular degeneration, or reflect the acquisition of new proteins by diffusion and molecular binding. This review proposes that the molecular composition of SP and NFT is largely a consequence of cell degeneration and the later acquisition of proteins. Such a conclusion has implications both for the diagnosis of AD and in studies of disease pathogenesis.