997 resultados para Biological movement
Resumo:
AIM: Specific factors responsible for interindividual variability should be identified and their contribution quantified to improve the usefulness of biological monitoring. Among others, age is an easily identifiable determinant, which could play an important impact on biological variability. MATERIALS AND METHODS: A compartmental toxicokinetic model developed in previous studies for a series of metallic and organic compounds was applied to the description of age differences. Young male physiological and metabolic parameters, based on Reference Man information, were taken from preceding studies and were modified to take into account age based on available information about age differences. RESULTS: Numerical simulation using the kinetic model with the modified parameters indicates in some cases important differences due to age. The expected changes are mostly of the order of 10-20%, but differences up to 50% were observed in some cases. CONCLUSION: These differences appear to depend on the chemical and on the biological entity considered. Further work should be done to improve our estimates of these parameters, by considering for example uncertainty and variability in these parameters. [Authors]
Resumo:
Smoking influences body weight such that smokers weigh less than non-smokers and smoking cessation often leads to weight increase. The relationship between body weight and smoking is partly explained by the effect of nicotine on appetite and metabolism. However, the brain reward system is involved in the control of the intake of both food and tobacco. We evaluated the effect of single-nucleotide polymorphisms (SNPs) affecting body mass index (BMI) on smoking behavior, and tested the 32 SNPs identified in a meta-analysis for association with two smoking phenotypes, smoking initiation (SI) and the number of cigarettes smoked per day (CPD) in an Icelandic sample (N=34,216 smokers). Combined according to their effect on BMI, the SNPs correlate with both SI (r=0.019, P=0.00054) and CPD (r=0.032, P=8.0 × 10(-7)). These findings replicate in a second large data set (N=127,274, thereof 76,242 smokers) for both SI (P=1.2 × 10(-5)) and CPD (P=9.3 × 10(-5)). Notably, the variant most strongly associated with BMI (rs1558902-A in FTO) did not associate with smoking behavior. The association with smoking behavior is not due to the effect of the SNPs on BMI. Our results strongly point to a common biological basis of the regulation of our appetite for tobacco and food, and thus the vulnerability to nicotine addiction and obesity.
Resumo:
This study proposes a new concept for upscaling local information on failure surfaces derived from geophysical data, in order to develop the spatial information and quickly estimate the magnitude and intensity of a landslide. A new vision of seismic interpretation on landslides is also demonstrated by taking into account basic geomorphic information with a numeric method based on the Sloping Local Base Level (SLBL). The SLBL is a generalization of the base level defined in geomorphology applied to landslides, and allows the calculation of the potential geometry of the landslide failure surface. This approach was applied to a large scale landslide formed mainly in gypsum and situated in a former glacial valley along the Rhone within the Western European Alps. Previous studies identified the existence of two sliding surfaces that may continue below the level of the valley. In this study. seismic refraction-reflexion surveys were carried out to verify the existence of these failure surfaces. The analysis of the seismic data provides a four-layer model where three velocity layers (<1000 ms(-1), 1500 ms(-1) and 3000 ms(-1)) are interpreted as the mobilized mass at different weathering levels and compaction. The highest velocity layer (>4000 ms(-1)) with a maximum depth of similar to 58 m is interpreted as the stable anhydrite bedrock. Two failure surfaces were interpreted from the seismic surveys: an upper failure and a much deeper one (respectively 25 and 50 m deep). The upper failure surface depth deduced from geophysics is slightly different from the results obtained using the SLBL, and the deeper failure surface depth calculated with the SLBL method is underestimated in comparison with the geophysical interpretations. Optimal results were therefore obtained by including the seismic data in the SLBL calculations according to the geomorphic limits of the landslide (maximal volume of mobilized mass = 7.5 x 10(6) m(3)).
Resumo:
An exhaustive classification of matrix effects occurring when a sample preparation is performed prior to liquid-chromatography coupled to mass spectrometry (LC-MS) analyses was proposed. A total of eight different situations were identified allowing the recognition of the matrix effect typology via the calculation of four recovery values. A set of 198 compounds was used to evaluate matrix effects after solid phase extraction (SPE) from plasma or urine samples prior to LC-ESI-MS analysis. Matrix effect identification was achieved for all compounds and classified through an organization chart. Only 17% of the tested compounds did not present significant matrix effects.
Resumo:
The outer part of the tetraspora cell wall in Gelidium crinale (Turner) J.V. Lamour. and G. spathulatum (Kutz.) Bornet is morphologically described in relation to the movements and displacement of these spores when they settle on a substratum. We also describe the mechanism of adhesión and the transformations undergone by this mechanism over time. The cell wall shows a network of fibrillar threads embedded in abundant mucilage. The deformations that tetraspores undergo show that the cell wall is relatively elastic.
Resumo:
Exposure to various pesticides has been characterized in workers and the general population, but interpretation and assessment of biomonitoring data from a health risk perspective remains an issue. For workers, a Biological Exposure Index (BEI®) has been proposed for some substances, but most BEIs are based on urinary biomarker concentrations at Threshold Limit Value - Time Weighted Average (TLV-TWA) airborne exposure while occupational exposure can potentially occurs through multiple routes, particularly by skin contact (i.e.captan, chlorpyrifos, malathion). Similarly, several biomonitoring studies have been conducted to assess environmental exposure to pesticides in different populations, but dose estimates or health risks related to these environmental exposures (mainly through the diet), were rarely characterized. Recently, biological reference values (BRVs) in the form of urinary pesticide metabolites have been proposed for both occupationally exposed workers and children. These BRVs were established using toxicokinetic models developed for each substance, and correspond to safe levels of absorption in humans, regardless of the exposure scenario. The purpose of this chapter is to present a review of a toxicokinetic modeling approach used to determine biological reference values. These are then used to facilitate health risk assessments and decision-making on occupational and environmental pesticide exposures. Such models have the ability to link absorbed dose of the parent compound to exposure biomarkers and critical biological effects. To obtain the safest BRVs for the studied population, simulations of exposure scenarios were performed using a conservative reference dose such as a no-observed-effect level (NOEL). The various examples discussed in this chapter show the importance of knowledge on urine collections (i.e. spot samples and complete 8-h, 12-h or 24-h collections), sampling strategies, metabolism, relative proportions of the different metabolites in urine, absorption fraction, route of exposure and background contribution of prior exposures. They also show that relying on urinary measurements of specific metabolites appears more accurate when applying this approach to the case of occupational exposures. Conversely, relying on semi-specific metabolites (metabolites common to a category of pesticides) appears more accurate for the health risk assessment of environmental exposures given that the precise pesticides to which subjects are exposed are often unknown. In conclusion, the modeling approach to define BRVs for the relevant pesticides may be useful for public health authorities for managing issues related to health risks resulting from environmental and occupational exposures to pesticides.
Resumo:
Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have increased the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin concentration showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional analysis of these newly discovered loci will further improve our understanding of glycemic control.
Resumo:
This report describes the field application of the tilt sensing method for monitoring movement of the Black Hawk and Karl King Bridges. The study objectives were: to design a data acquisition system for tilt sensing equipment utilizing a telephone telemetry system; to monitor possible movement of the main span pier, Pier No. 2, on the Black Hawk Bridge in Lansing and the possible long-term movement of Pier No. 4 on the Karl King Bridge in Fort Dodge; and to assess the feasibility, reliability, and accuracy of the instrumentation system used in this study.
Resumo:
This report describes the field application of the tilt sensing method for monitoring movement of the Black Hawk and Karl King Bridges. The study objectives were: to design a data acquisition system for tilt sensing equipment utilizing a telephone telemetry system; to monitor possible movement of the main span pier, Pier No. 2, on the Black Hawk Bridge in Lansing and the possible long-term movement of Pier No. 4 on the Karl King Bridge in Fort Dodge; and to assess the feasibility, reliability, and accuracy of the instrumentation system used in this study.
Resumo:
The use of wild oat races in artificial hybridization with cultivated oat (Avena sativa L.) has been used as a way of increasing the variability. This work aimed to identify the variability for plant height and flowering date of groups of cultivated oat genotypes, wild introductions of A. fatua L. and segregating populations of natural crosses between A. sativa and A. fatua. Wide genetic variability was observed for both traits in the groups and between them. The wild group of A. fatua L. showed high plants with early maturity, but in the segregating group there was reduced plant height and early maturity. The wild introductions of A. fatua L. studied in this work can be used in oat breeding programs to increase genetic variability by transferring specific characters into the cultivated germ plasm.