976 resultados para Bidirectional power flow
Resumo:
The Fast Field-Cycling Nuclear Magnetic Resonance (FFC-NMR) is a technique used to study the molecular dynamics of different types of materials. The main elements of this equipment are a magnet and its power supply. The magnet used as reference in this work is basically a ferromagnetic core with two sets of coils and an air-gap where the materials' sample is placed. The power supply should supply the magnet being the magnet current controlled in order to perform cycles. One of the technical issues of this type of solution is the compensation of the non-linearities associated to the magnetic characteristic of the magnet and to parasitic magnetic fields. To overcome this problem, this paper describes and discusses a solution for the FFC-NMR power supply based on a four quadrant DC/DC converter.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
The current capabilities of mobile phones in terms of communication, processing and storage, enables its use to form autonomous networks of devices that can be used in case of collapse or inexistent support from a communication infrastructure. In this paper, we propose a network configuration of nodes that provides high-speed bidirectional device-to-device communication, with symmetrical data transfer rates, in Wi-Fi Direct multi-group scenarios, without using performance hindering broadcasts. Copyright © 2015 ICST.
Resumo:
1st European IAHR Congress,6-4 May, Edinburg, Scotland
Resumo:
River Flow 2008, Vol.1
Resumo:
33rd IAHR Congress: Water Engineering for a Sustainable Environment
Resumo:
This paper is on a simulation for offshore wind systems in deep water under cloud scope. The system is equipped with a permanent magnet synchronous generator and a full-power three-level converter, converting the electric energy at variable frequency in one at constant frequency. The control strategies for the three-level are based on proportional integral controllers. The electric energy is injected through a HVDC transmission submarine cable into the grid. The drive train is modeled by a three-mass model taking into account the resistant stiffness torque, structure and tower in the deep water due to the moving surface elevation. Conclusions are taken on the influence of the moving surface on the energy conversion. © IFIP International Federation for Information Processing 2015.
Resumo:
Mestrado em Engenharia Química – Ramo Optimização Energética na Indústria Química
Resumo:
The localization of magma melting areas at the lithosphere bottom in extensional volcanic domains is poorly understood. Large polygenetic volcanoes of long duration and their associated magma chambers suggest that melting at depth may be focused at specific points within the mantle. To validate the hypothesis that the magma feeding a mafic crust, comes from permanent localized crustal reservoirs, it is necessary to map the fossilized magma flow within the crustal planar intrusions. Using the AMS, we obtain magmatic flow vectors from 34 alkaline basaltic dykes from São Jorge, São Miguel and Santa Maria islands in the Azores Archipelago, a hot-spot related triple junction. The dykes contain titanomagnetite showing a wide spectrum of solid solution ranging from Ti-rich to Ti-poor compositions with vestiges of maghemitization. Most of the dykes exhibit a normal magnetic fabric. The orientation of the magnetic lineation k1 axis is more variable than that of the k3 axis, which is generally well grouped. The dykes of São Jorge and São Miguel show a predominance of subhorizontal magmatic flows. In Santa Maria the deduced flow pattern is less systematic changing from subhorizontal in the southern part of the island to oblique in north. These results suggest that the ascent of magma beneath the islands of Azores is predominantly over localized melting sources and then collected within shallow magma chambers. According to this concept, dykes in the upper levels of the crust propagate laterally away from these magma chambers thus feeding the lava flows observed at the surface.
Resumo:
Em Portugal existem muitos espaços comerciais e industriais em que as necessidades térmicas de arrefecimento são muito superiores às necessidades de aquecimento devido aos ganhos internos que advêm da existência de equipamentos e da iluminação dos edifícios, assim como, da presença das pessoas. A instalação de sistemas convencionais de ar condicionado para espaços comerciais e industriais de grande dimensão está geralmente associada ao transporte de grandes caudais de ar, e consequentemente, a elevados consumos de energia primária, e também, elevados custos de investimento, de manutenção e de operação. O arrefecedor evaporativo é uma solução de climatização com elevada eficiência energética, cujo princípio de funcionamento promove a redução do consumo de energia primária nos edifícios. A metodologia utilizada baseou-se na criação de uma ferramenta informática de simulação do funcionamento de um protótipo de um arrefecedor evaporativo. Foi efetuada a modelação matemática das variáveis dinâmicas envolvidas, dos processos de transferência de calor e de massa, assim como dos balanços de energia que ocorrem no arrefecedor evaporativo. A ferramenta informática desenvolvida permite o dimensionamento do protótipo do arrefecedor evaporativo, sendo determinadas as caraterísticas técnicas (potência térmica, caudal, eficiência energética, consumo energético e consumo e água) de acordo com o tipo de edifício e com as condições climatéricas do ar exterior. Foram selecionados três dimensionamentos de arrefecedores evaporativos, representativos de condições reais de uma gama baixa, média e elevada de caudais de ar. Os resultados obtidos nas simulações mostram que a potência de arrefecimento (5,6 kW, 16,0 kW e 32,8 kW) e o consumo de água (8 l/h, 23,9 l/h e 48,96 l/h) aumentam com o caudal de ar do arrefecedor, 5.000 m3/h, 15.000 m3/h e 30.000 m3/h, respetivamente. A eficácia de permuta destes arrefecedores evaporativos, foi de 69%, 66% e 67%, respetivamente. Verificou-se que a alteração de zona climática de V1 para V2 implicou um aumento de 39% na potência de arrefecimento e de 20% no consumo de água, e que, a alteração de zona climática de V2 para V3 implicou um aumento de 39% na potência de arrefecimento e de 39% no consumo de água. O arrefecedor evaporativo apresenta valores de consumo de energia elétrica entre 40% a 80% inferiores aos dos sistemas de arrefecimento convencionais, sendo este efeito mais intenso quando a zona climática de verão se torna mais severa.
Resumo:
When China launched an anti-satellite (ASAT) weapon in January 2007 to destroy one of its inactive weather satellites, most reactions from academics and U.S. space experts focused on a potential military “space race” between the United States and China. Overlooked, however, is China’s growing role as global competitor on the non-military side of space. China’s space program goes far beyond military counterspace applications and manifests manned space aspirations, including lunar exploration. Its pursuit of both commercial and scientific international space ventures constitutes a small, yet growing, percentage of the global space launch and related satellite service industry. It also highlights China’s willingness to cooperate with nations far away from Asia for political and strategic purposes. These partnerships may constitute a challenge to the United States and enhance China’s “soft power” among key American allies and even in some regions traditionally dominated by U.S. influence (e.g., Latin America and Africa). Thus, an appropriate U.S. response may not lie in a “hard power” counterspace effort but instead in a revival of U.S. space outreach of the past, as well as implementation of more business-friendly export control policies.
Resumo:
Demand response is assumed as an essential resource to fully achieve the smart grids operating benefits, namely in the context of competitive markets and of the increasing use of renewable-based energy sources. Some advantages of Demand Response (DR) programs and of smart grids can only be achieved through the implementation of Real Time Pricing (RTP). The integration of the expected increasing amounts of distributed energy resources, as well as new players, requires new approaches for the changing operation of power systems. The methodology proposed in this paper aims the minimization of the operation costs in a distribution network operated by a virtual power player that manages the available energy resources focusing on hour ahead re-scheduling. When facing lower wind power generation than expected from day ahead forecast, demand response is used in order to minimize the impacts of such wind availability change. In this way, consumers actively participate in regulation up and spinning reserve ancillary services through demand response programs. Real time pricing is also applied. The proposed model is especially useful when actual and day ahead wind forecast differ significantly. Its application is illustrated in this paper implementing the characteristics of a real resources conditions scenario in a 33 bus distribution network with 32 consumers and 66 distributed generators.
Resumo:
This paper proposes a wind speed forecasting model that contributes to the development and implementation of adequate methodologies for Energy Resource Man-agement in a distribution power network, with intensive use of wind based power generation. The proposed fore-casting methodology aims to support the operation in the scope of the intraday resources scheduling model, name-ly with a time horizon of 10 minutes. A case study using a real database from the meteoro-logical station installed in the GECAD renewable energy lab was used. A new wind speed forecasting model has been implemented and it estimated accuracy was evalu-ated and compared with a previous developed forecast-ing model. Using as input attributes the information of the wind speed concerning the previous 3 hours enables to obtain results with high accuracy for the wind short-term forecasting.
Resumo:
The integration of growing amounts of distributed generation in power systems, namely at distribution networks level, has been fostered by energy policies in several countries around the world, including in Europe. This intensive integration of distributed, non-dispatchable, and natural sources based generation (including wind power) has caused several changes in the operation and planning of power systems and of electricity markets. Sometimes the available non-dispatchable generation is higher than the demand. This generation must be used; otherwise it is wasted if not stored or used to supply additional demand. New policies and market rules, as well as new players, are needed in order to competitively integrate all the resources. The methodology proposed in this paper aims at the maximization of the social welfare in a distribution network operated by a virtual power player that aggregates and manages the available energy resources. When facing a situation of excessive non-dispatchable generation, including wind power, real time pricing is applied in order to induce the increase of consumption so that wind curtailment is minimized. This method is especially useful when actual and day-ahead resources forecast differ significantly. The distribution network characteristics and concerns are addressed by including the network constraints in the optimization model. The proposed methodology has been implemented in GAMS optimization tool and its application is illustrated in this paper using a real 937-bus distribution network with 20.310 consumers and 548 distributed generators, some of them non-dispatchable and with must take contracts. The implemented scenario corresponds to a real day in Portuguese power system.
Resumo:
The intensive use of distributed generation based on renewable resources increases the complexity of power systems management, particularly the short-term scheduling. Demand response, storage units and electric and plug-in hybrid vehicles also pose new challenges to the short-term scheduling. However, these distributed energy resources can contribute significantly to turn the shortterm scheduling more efficient and effective improving the power system reliability. This paper proposes a short-term scheduling methodology based on two distinct time horizons: hour-ahead scheduling, and real-time scheduling considering the point of view of one aggregator agent. In each scheduling process, it is necessary to update the generation and consumption operation, and the storage and electric vehicles status. Besides the new operation condition, more accurate forecast values of wind generation and consumption are available, for the resulting of short-term and very short-term methods. In this paper, the aggregator has the main goal of maximizing his profits while, fulfilling the established contracts with the aggregated and external players.