997 resultados para Autopilot Flight Architecture
Resumo:
This paper describes the development of a generic tool for dynamic cost indexing (DCI), which encompasses the ability to manage flight delay costs on a dynamic basis, trading accelerated fuel burn against ‘cost of time’. Many airlines have significant barriers to identifying which costs should be included in ‘cost of time’ calculations and how to quantify them. The need is highlighted to integrate historical passenger delay and policy data with real-time passenger connections data. The absence of industry standards for defining and interfacing necessary tools is recognised. Delay recovery decision windows and ATC cooperation are key constraints. DCI tools could also be used in the pre-departure phase, and may offer environmental decision support functionality: which could be used as a differentiating technology required for access to designated, future ‘green’ airspace. Short-term opportunities for saving fuel and/or reducing emissions are also identified.
Resumo:
We will consider the architecture of the communication platform prototype, "World Cultures in English(es)" (WCE), in relation to the interaction among different types of media and audiences. Such an architecture has emphasized the need for an interdisciplinary team of scholars, librarians, and Information Technology experts who have conceived the prototype. This prototype was developed using PHP and MySQL, and is based on the University of Lisbon server. The "World Cultures in English(es)" is an Open Access platform bringing together different types of documents—written, audio, visual, multimedia, and electronic—and aims at educational, cultural, social, and economic inclusiveness, namely in terms of users with special needs. The WCE platform strongly implies social commitment through reliable information and forms of communication adequate to different kinds of audiences. The "World Cultures in English(es)" prototype will be tested by different audiences from different schools and universities, leading to the necessary adjustments.
Resumo:
The design of a decision-support prototype tool for managing flight delay costs in the pre-departure and airborne phases of a flight is described. The tool trades accelerated fuel burn and emissions charges against 'cost of time'. Costs for all major 'cost of time' components, by three cost scenarios, twelve aircraft types and by magnitude of delay are derived. Short-term opportunities for saving fuel and/or reducing environmental impacts are identified. A shift in ATM from managing delay minutes to delay cost is also supported.
Resumo:
Estimates of airline delay costs as a function of delay magnitude are combined with fuel and (future) emissions charges to make cost-benefit trade-offs in the pre-departure and airborne phases. Hypothetical scenarios for the distribution of flow management slots are explored in terms of their cost and target-setting implications. The general superiority of passenger-centric metrics is of significance for delay measurement, although flight delays are still the only commonly-reported type of metric in both the US and Europe. There is a particular need for further research into reactionary (network) effects, especially with regard to passenger metrics and flow management delay.
Resumo:
Reactionary delays constitute nearly half of all delay minutes in Europe. A capped, multi-component model is presented for estimating reactionary delay costs, as a non-linear function of primary delay duration. Maximum Take-Off Weights, historically established as a charging mechanism, may be used to model delay costs. Current industry reporting on delay is flight-centric. Passenger-centric metrics are needed to better understand delay propagation. In ATM, it is important to take account of contrasting flight- and passenger-centric effects, caused by cancellations, for example. Costs to airlines and passenger disutility will both continue to be driven by delay relative to the original schedule.