977 resultados para Anterior Uveitis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study we investigated tension regulation in the human soleus (SOL) muscle during controlled lengthening and shortening actions. Eleven subjects performed plantar flexor efforts on an ankle torque motor through 30 degrees of ankle displacement (75 degrees-105 degrees internal ankle angle) at lengthening and shortening velocities of 5, 15 and 30 degrees s(-1). To isolate the SOL from the remainder of the triceps surae, the subject's knee was flexed to 60 degrees during all trials. Voluntary plantar flexor efforts were performed under two test conditions: (1) maximal voluntary activation (MVA) of the SOL, and (2) constant submaximal voluntary activation (SVA) of the SOL. SVA trials were performed with direct visual feedback of the SOL electromyogram (EMG) at a level resulting in a torque output of 30% of isometric maximum. Angle-specific (90 degrees ankle angle) torque and EMG of the SOL, medial gastrocnemius (MG) and tibialis anterior (TA) were recorded. In seven subjects from the initial group, the test protocol was repeated under submaximal percutaneous electrical activation (SEA) of SOL (to 30% isometric maximal effort). Lengthening torques were significantly greater than shortening torques in all test conditions. Lengthening torques in MVA and SVA were independent of velocity and remained at the isometric level, whereas SEA torques were greater than isometric torques and increased at higher lengthening velocities. Shortening torques were lower than the isometric level for all conditions. However, whereas SVA and SEA torques decreased at higher velocities of shortening, MVA torques were independent of velocity. These results indicate velocity- and activation-type-specific tension regulation in the human SOL muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The status of Petalocotyle Ozaki, 1934 within the Gyliauchenidae Goto & Matsudaira, 1918 is reviewed. Two new species, P. adenometra from Prionurus microlepidotus (Amity Point, Queensland, Australia) and P. diverticulata from Acanthurus nigrofuscus and A. lineatus (Heron Island, Queensland, Australia), are described. The body plan of Petalocotyle conforms to that of members of the Gyliauchenidae (oral sucker absent, well-developed pharynx, complex oesophagus and characteristic male terminal genitalia), indicating justifiable inclusion in this family. A new diagnosis is given for the genus, such that Petalocotyle is now identified by the presence of an anterior, protuberant ventral sucker, long caeca, a large, sigmoid cirrus-sac containing a coiled ejaculatory duct, and an extensive vitellarium. We suggest that, of all the known genera of gyliauchenids, Petalocotyle may most closely resemble the 'archaetypal gyliauchenid', that is, it may be placed basally within the radiation of the Gyliauchenidae. However, derived characters, like diverticula in the reproductive system, indicate that some characters of individual members of Petalocotyle may be considered advanced and do not reflect an archaetypal condition. Parallels in the structure of the male and female genitalia of Robphildollfusium Paggi & Orecchia, 1963 and Petalocotyle, along with the shared morphology of the digestive tract, indicate possible phylogenetic links between the two genera. This affinity is difficult to infer using morphology alone and recommend that Robphildollfusium remain detached from the Gyliauchenidae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) contribute significantly to myocardial ischaemia-reperfusion (I-R) injury. Recently the combination of the antioxidants vitamin E (VE) and alpha-lipoic acid (alpha-LA) has been reported to improve cardiac performance and reduce myocardial lipid peroxidation during in vitro I-R. The purpose of these experiments was to investigate the effects of VE and alpha-LA supplementation on cardiac performance, incidence of dysrhythmias and biochemical alterations during an in vivo myocardial I-R insult. Female Sprague-Dawley rats (4-months old) were assigned to one of the two dietary treatments: (1) control diet (CON) or (2) VE and alpha-LA supplementation (ANTIOXID). The CON diet was prepared to meet AIN-93M standards, which contains 75 IU VE kg(-1) diet. The ANTIOXID diet contained 10 000 IU VE kg(-1) diet and 1.65 g alpha-LA kg(-1) diet. After the 14-week feeding period, significant differences (P < 0.05) existed in mean myocardial VE levels between dietary groups. Animals in each experimental group were subjected to an in vivo I-R protocol which included 25 min of left anterior coronary artery occlusion followed by 10 min of reperfusion. No group differences (P > 0.05) existed in cardiac performance (e.g. peak arterial pressure or ventricular work) or the incidence of ventricular dysrhythmias during the I-R protocol. Following I-R, two markers of lipid peroxidation were lower (P < 0.05) in the ANTIOXID animals compared with CON. These data indicate that dietary supplementation of the antioxidants, VE and alpha-LA do not influence cardiac performance or the incidence of dysrhythmias but do decrease lipid peroxidation during in viva I-R in young adult rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite extensive study of the numerous immunoregulatory mechanisms that contribute to the immune-privileged nature of the anterior chamber (AC) of the eye, little is known of the functional nature of antigen-presenting cells (APC) present in the tissues adjoining the AC. In the present study, we have compared the antigen-presenting capacity of dendritic cells (DC) and macrophages isolated from the normal rat iris. Whereas iris DC exhibited a potent ability to stimulate resting allogeneic T cells in MLR cultures (an in-vitro correlate of the ability to induce primary T cell responses), resident iris macrophages displayed negligible MLR-stimulatory capacity. Significantly, iris macrophages could efficiently elicit proliferation of primed antigen-specific T cells (an in-vitro correlate of the ability to act as local APC in secondary responses). This antigen-presenting activity was approximately half that of fully mature iris DC and considerably greater than that of freshly isolated iris DC. A key contributor to the effectiveness of resident iris macrophage antigen presentation was considered to be the absence of lymphocytostatic control of T cell proliferation exerted by these cells. The results indicate dichotomous but complementary roles for DC (immune surveillance) and macrophages (local antigen presentation in secondary responses) in this tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In gastropod mollusks, neuroendocrine cells in the anterior ganglia have been shown to regulate growth and reproduction. As a first step toward understanding the molecular mechanisms underlying the regulation of these physiological processes in the tropical abalone Haliotis asinina, ive have identified sets of POU, Sox, and Pax transcription factor genes that are expressed in these ganglia. Using highly degenerate oligonucleotide primers designed to anneal to conserved codons in each of these gene families, we have amplified by reverse transcriptase polymerase chain reaction 2 POU genes (HasPOU-III and HasPOU-IV), 2 Sox genes (HasSox-B and HasSox-C), and two Pax genes (HasPax-258 and HaxPax-6). Analyses with gene-specific primers indicated that the 6 genes are expressed in the cerebral and pleuropedal ganglia of both reproductively active and spent adults, in a number of sensory structures, and in a subset of other adult tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used positron emission tomography (PET) with O-15-labelled water to record patterns of cerebral activation in six patients with Parkinson's disease (PD), studied when clinically off and after turning on as a result of dopaminergic stimulation. They were asked to imagine a Finger opposition movement performed with their right hand. externally paced at a rate of 1 Hz. Trials alternating between motor imagery and rest were measured. A pilot study of three age-matched controls was also performed. We chose the task as a robust method of activating the supplementary motor area (SMA), defects of which have been reported in PD. The PD patients showed normal de-rees of activation of the SMA (proper) when both off and on. Significant activation with imagining movement also occurred in the ipsilateral inferior parietal cortex (both off and when on) and ipsilateral premotor cortex (when off only). The patients showed significantly greater activation of the rostral anterior cingulate and significantly less activation of the left lingual gyrus and precuneus when performing the task on compared with their performance when off. PD patients when imagining movement and off showed less activation of several sites including the right dorsolateral prefrontal cortex (DLPFC) when compared to the controls performing the same task. No significant differences from controls were present when the patients imagined when on. Our results are consistent with other studies showing deficits of pre-SMA function in PD with preserved function of the SMA proper. In addition to the areas of reduced activation (anterior cingulate, DLPFC), there were also sites of activation (ipsilateral premotor and inferior parietal cortex) previously reported as locations of compensatory overactivity for PD patients performing similar tasks. Both failure of activation and compensatory changes a-re likely to contribute to the motor deficit in PD. (C) 2001 Movement Disorder Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In experiments on isolated animal muscle, the force produced during active lengthening contractions can be up to twice the isometric force, whereas in human experiments lengthening force shows only modest, if any, increase in force. The presence of synergist and antagonist muscle activation associated with human experiments in situ may partly account for the difference between animal and human studies. Therefore, this study aimed to quantify the force-velocity relationship of the human soleus muscle and assess the likelihood that co-activation of antagonist muscles was responsible for the inhibition of torque during submaximal voluntary plantar flexor efforts. Seven subjects performed submaximal voluntary lengthening, shortening(at angular, velocities of +5, -5, +15, -15 and +30, and -30degrees s(-1)) and isometric plantar flexor efforts against an ankle torque motor. Angle-specific (90degrees) measures of plantar flexor torque plus surface and intramuscular electromyography from soleus, medial gastrocnemius and tibialis anterior were made. The level of activation (30% of maximal voluntary isometric effort) was maintained by providing direct visual feedback of the soleus electromyogram to the subject. In an attempt to isolate the contribution of soleus to the resultant plantar flexion torque, activation of the synergist and antagonist muscles were minimised by: (1) flexing the knee of the test limb, thereby minimising the activation of gastrocnemius, and (2) applying an anaesthetic block to the common peroneal nerve to eliminate activation of the primary antagonist muscle, tibialis anterior and the synergist muscles, peroneus longus and peroneus brevis. Plantar flexion torque decreased significantly (P<0.05) after blocking the common peroneal nerve which was likely due to abolishing activation of the peroneal muscles which are synergists for plantar flexion. When normalised to the corresponding isometric value, the force-velocity relationship between pre- and post-block conditions was not different. In both conditions, plantar flexion torques during shortening actions were significantly less than the isometric torque and decreased at faster velocities. During lengthening actions, however, plantar flexion torques were not significantly different from isometric regardless of angular velocity. It was concluded that the apparent inhibition of lengthening torques during voluntary activation is not due to co-activation of antagonist muscles. Results are presented as mean (SEM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The functional brain organisation of mathematically gifted adolescents may be different from those of average mathematical ability. In this study we used fMRI to examine the neural circuitry that mediates the performance of mathematically gifted boys and average ability controls while engaged in mental rotation. Eight math gifted male adolescents and five average ability male adolescents were presented 18 control and 18 mental rotation trials in two separate blocks. Participants selected one of four test stimuli to match the target stimulus by pressing one of four fibreoptic buttons. The control task required a simple 'best match' for the target stimulus. EPI scans were acquired on a 3-T MR scanner and a fixed effects statistical analysis (SPM99) was used to identify areas of significant activation in the rotation tasks, for the two groups. The results indicate that during mental rotation both groups activate the parietal lobes bilaterally, though to different levels. Moreover, the math gifted are uniformly bilateral in their pattern of activation, and engage some anterior regions not found in those of average ability. These regions include bilateral prefrontal cortex and the right anterior cingulate, which may serve to heighten concentration, and to optimise the pre-planning of purposeful actions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thirst was induced by rapid i.v. infusion of hypertonic saline (0.51 M at 13.4 ml/min). Ten humans were neuroimaged by positron-emission tomography (PET) and four by functional MRI (fMRI). PET images were made 25 min after beginning infusion, when the sensation of thirst began to enter the stream of consciousness. The fMRI images were made when the maximum rate of increase of thirst occurred. The PET results showed regional cerebral blood flow changes similar to those delineated when thirst was maximal. These loci involved the phylogenetically ancient areas of the brain. fMRI showed activation in the anterior wall of the third ventricle, an area that is key in the genesis of thirst but is not an area revealed by PET imaging. Thus, this region plays as major a role in thirst for humans as for animals. Strong activations in the brain with fMRI included the anterior cingulate, parahippocampal gyrus, inferior and middle frontal gyri, insula, and cerebellum. When the subjects drank water to satiation, thirst declined immediately to baseline. A precipitate decline in intensity of activation signal occurred in the anterior cingulate area (Brodmann area 32) putatively related to consciousness of thirst. The intensity of activation in the anterior wall of the third ventricle was essentially unchanged, which is consistent with the fact that a significant time (15-20 min) would be needed before plasma Na concentration changed as a result of water absorption from the gut.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One consistent functional imaging finding from patients with major depression has been abnormality of the anterior cingulate cortex (ACC). Hypoperfusion has been most commonly reported, but some studies suggest relative hyperperfusion is associated with response to somatic treatments. Despite these indications of the possible importance of the ACC in depression there have been relatively few cognitive studies ACC function in patients with major depression. The present study employed a series of reaction time (RT) tasks involving selection with melancholic and nonmelancholic depressed patients, as well as age-matched controls. Fifteen patients with unipolar major depression (7 melancholic, 8 nonmelancholic) and 8 healthy age-matched controls performed a series of response selection tasks (choice RT, spatial Stroop, spatial stimulus-response compatibility (SRC), and a combined Stroop + SRC condition). Reaction time and error data were collected. Melancholic patients were significantly slower than controls on all tasks but were slower than nonmelancholic patients only on the Stroop and Stroop + SRC conditions. Nonmelancholic patients did not differ from the control group on any task. The Stroop task seems crucial in differentiating the two depressive groups, they did not differ on the choice RT or SRC tasks. This may reflect differential task demands, the SRC involved symbolic manipulation that might engage the dorsal ACC and dorsolateral prefrontal cortex (DLPFC) to a greater extent than the, primarily inhibitory, Stroop task which may engage the ventral ACC and orbitofrontal cortex (OFC). This might suggest the melancholic group showed a greater ventral ACC-OFC deficit than the nonmelancholic group, while both groups showed similar dorsal ACC-DLPFC deficit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In insects, exoskeleton (cuticle) formation at each molt cycle includes complex biochemical pathways wherein the laccase enzymes (EC 1.10.3.2) may have a key role. We identified an Amlac2 gene that encodes a laccase2 in the honey bee, Apis mellifera, and investigated its function in exoskeleton differentiation. The Amlac2 gene consists of nine exons resulting in an ORE of 2193 nucleotides. The deduced translation product is a 731 amino acid protein of 81.5 kDa and a pl of 6.05. Amlac2 is highly expressed in the integument of pharate adults, and the expression precedes the onset of cuticle pigmentation and the intensification of sclerotization. In accordance with the temporal sequence of exoskeleton differentiation from anterior to posterior direction, the levels of Amlac2 transcript increase earlier in the thoracic than in the abdominal integument. The gene expression lasts even after the bees emerge from brood cells and begin activities in the nest, but declines after the transition to foraging stage, suggesting that maturation of the exoskeleton is completed at this stage. Post-transcriptional knockdown of Amlac2 gene expression resulted in structural abnormalities in the exoskeleton and drastically affected adult eclosion. By setting a ligature between the thorax and abdomen of early pupae we could delay the increase in hemolymph ecdysteroid levels in the abdomen. This severely impaired the increase in Amlac2 transcript levels and also the differentiation of the abdominal exoskeleton. Taken together, these results indicate that Amlac2 expression is controlled by ecdysteroids and has a critical role in the differentiation of the adult exoskeleton of honey bees. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detailed description of the cranial anatomy of the rhynchosaur previously known as Scaphonyx sulcognathus allows its assignment to a new genus Teyumbaita. Two nearly complete skulls and a partial skull have been referred to the taxon, all of which come from the lower part of the Caturrita Formation, Upper Triassic of Rio Grande do Sul, southern Brazil. Cranial autapomorphies of Teyumbaita sulcognathus include anterior margin of nasal concave at midline, prefrontal separated from the ascending process of the maxilla, palatal ramus of pterygoid expanded laterally within palatines, dorsal surface of exoccipital markedly depressed, a single tooth lingually displaced from the main medial tooth-bearing area of the maxilla, and a number of other characters (such as skull broader than long; a protruding orbital anterior margin; anguli oils extending to anterior ramus of the jugal; bar between the orbit and the lower temporal fenestra wider than 0.4 of the total orbital opening; mandibular depth reaching more than 25% of the total length) support its inclusion in Hyperodapedontinae. T. sulcognathus is the only potential Norian rhynchosaur, suggesting that the group survived the end-Carnian extinction event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statement of the study: Based on data from ecological and analytic epidemiological studies, we have proposed that low prenatal vitamin D is a candidate risk-modifying factor for schizophrenia. Previously, we demonstrated that low prenatal vitamin D adversely affected brain development in neonatal rats (Eyles et al, 2003). Here we examine the impact of both prenatal and early life hypovitaminosis D on various outcomes in the adult rat brain. Methods: Female Sprague-Dawley rats were made vitamin D deficient via the use of a special diet (Dyets CA) and lighting conditions that excluded UVB radiation. Animals were kept under these conditions for 6 weeks then mated with males kept under normal conditions. Vitamin deplete dams were kept under these conditions during pregnancy. Offspring from two test groups were examined. Offspring were either reared with dams repleted with vitamin D at birth or remained under deplete conditions till weaning. Both test groups were weaned under normal vitamin D conditions and remained so till testing at adulthood. We compared the brains of adult offspring kept under both test conditions with animals from control environments. Summary of results: We found a significant persistent dose-related increase in lateral ventricle volume and alterations in anterior cingulate and prefrontal cortical cell densities (consistent with the known prodifferentiation properties of this steroid). In both test groups we observed a reduced expression of NGF as well as a down-regulation of transcripts coding for GABAA alpha 4 receptor and two neuronal structural elements; MAP2 and Neurofilament L. Conclusion: These findings provide further evidence that vitamin D is involved in brain development. An increase in prefrontal cortical cell density, a reduction neuronal structural elements and persistent ventriculomegaly are all common anatomical findings in the brains of patients with schizophrenia. The specific reduction in transcripts for neuronal structural proteins but not GFAP is also in accordance with the proposal that frontal cortical architecture in schizophrenia reflects a reduction in connectivity rather than a reduction in glial processes(Goldman-Rakic and Selemon, 1997). These findings confirm the biological plausibility of early life hypovitaminosis D as a risk factor for schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: To compare the analgesic effectiveness and aesthetic appearance associated with topical, subconjunctival, and peribulbar anesthesia for intravitreal bevacizumab injection. PATIENTS AND METHODS: Sixty consecutive patients undergoing their first intravitreal bevacizumab injection were randomized to receive one of three forms of anesthesia: proxymetacaine eye drops, subconjunctival injection of 2% xylocaine, and peribulbar injection of 2% xylocaine. Pain associated with the intravitreal injection and with the entire procedure (including anesthesia administration) was recorded using a Visual Analog Scale 15 minutes after intravitreal injection. Anterior segment evaluation was performed 24 hours after injection to measure the number of clock hours of subconjunctival hemorrhage. RESULTS: Median injection-related pain score was significantly lower in the peribulbar group compared with the topical and subconjunctival groups (P < .05). Median entire procedure pain score was significantly higher In the peribulbar group compared with the topical and subconjunctival groups (P < .05). The median extent of subconjunctival hemorrhage was significantly lower in the topical group compared with the other groups (P < .05). CONCLUSION: Among the three anesthetic techniques, peribulbar anesthesia was associated with greater effectiveness in controlling injection-related pain but was least effective in controlling entire procedure pain. There was no significant difference in pain scores between the topical and subconjunctival groups, and topical anesthesia was associated with less subconjunctival hemorrhage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amygdala, the dorsal periaqueductal gray (dPAG), and the media] hypothalamus have long been recognized to be a neural system responsible for the generation and elaboration of unconditioned fear in the brain. It is also well known that this neural substrate is under a tonic inhibitory control exerted by GABA mechanisms. However, whereas there is a growing body of evidence to suggest that the amygdala and dPAG are also able to integrate conditioned fear, it is still unclear, however, how the distinct hypothalamic nuclei participate in fear conditioning. In this work we aimed to examine the extent to which the gabaergic mechanisms of this brain region are involved in conditioned fear using the fear-potentiated startle (FPS). Muscimol, a GABA-A receptor agonist, and semicarbazide, an inhibitor of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD), were used as an enhancer and inhibitor of the GABA mechanisms, respectively. Muscimol and semicarbazide were injected into the anterior hypothalamus (AHN). the dorsomedial part of the ventromedial nucleus (VMHDM), the dorsomedial (DMH) or the dorsal premammillary (PMD) nuclei of male Wistar rats before test sessions of the fear conditioning paradigm. The injections into the DMH and PMD did not produce any significant effects on FPS. On the other hand, muscimol injections into the AHN and VMHDM caused significant reduction in FPS. These results indicate that injections of muscimol and semicarbazide into the DMH and PMD fail to change the FPS, whereas the enhancement of the GABA transmission in the AHN and VMHDM produces a reduction of the conditioned fear responses. On the other hand, the inhibition of this transmission led to an increase of this conditioned response in the AHN. Thus, whereas DMH and PMD are known to be part of the caudal-most region of the medial hypothalamic defensive system, which integrates unconditioned fear, systems mediating conditioned fear select the AHN and VMHDM nuclei that belong to the rostral-most portion of the hypothalamic defense area. Thus, distinct subsets of neurons in the hypothalamus could mediate different aspects of the defensive responses. (C) 2008 Elsevier Inc. All rights reserved.