975 resultados para Antarctic Ocean


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clay-mineral composition and biogenic opal content in upper Miocene to Quaternary drift sediments recovered at two Ocean Drilling Program (ODP) sites from the continental rise in the Bellingshausen Sea had been analyzed in order to reconstruct the climatic and glacial history of the Antarctic Peninsula. The clay mineral composition at both sites is dominated by smectite, illite, and chlorite, and alternates between a smectite-enriched and a chlorite-enriched assemblage throughout the last 9.3 my. The spatial distribution of clay minerals in Holocene sediments west of the Antarctic Peninsula facilitates the identification of particular source areas, and thus the reconstruction of transport pathways. The similarity to clay mineral variations reported from upper Quaternary sequences suggests that the short-term clay-mineralogical fluctuations in the ODP cores reflect glacial-interglacial cyclicity. Thus, repeated ice advances and retreats in response to a varying size of the Antarctic Peninsula ice cap are likely to have occurred throughout the late Neogene and Quaternary. The clay minerals in the drift sediments exhibit only slight long-term variations, which are caused by local changes in glacial erosion and in supply of source rocks, rather than by major climatic changes. The opal records at the ODP sites are dominated by long-term variations since the late Miocene. We infer that the opal content in the drift sediments, although it is influenced by dissolution in the water column and the sediment column and by the burial with lithogenic detritus, provides a signal of paleoproductivity. Because the annual sea-ice coverage is regarded as the main factor controlling biological productivity, the opal signal helps to reconstruct paleoceanographic changes in the Bellingshausen Sea. Slightly enhanced opal deposition during the late Miocene indicates slightly warmer climatic conditions in the Antarctic Peninsula area than at present. During the early Pliocene, enhanced opal deposition in the Pacific sector of the Southern Ocean and coinciding high opal concentrations in sedimentary sequences from the Atlantic and Indian sectors document a strong reduction of sea-ice cover and relatively warm climatic conditions. Thereby, the early onset of the Pliocene warmth in the Bellingshausen Sea points to a positive feedback of regional Antarctic climate on the global thermohaline circulation. A decrease of opal deposition between 3.1 and 2.6 Ma likely reflects sea-ice expansion in response to reduced supply of northern-sourced deep-waters to the Southern Ocean, caused by the onset of Northern Hemisphere glaciation. Throughout the Quaternary, a relatively constant level of opal deposition on the Antarctic continental margin indicates relatively stable climatic conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: The ability of Antarctic krill Euphausia superba Dana to withstand the overwintering period is critical to their success. Laboratory evidence suggests that krill may shrink in body length during this time in response to the low availability of food. Nevertheless, verification that krill can shrink in the natural environment is lacking because winter data are difficult to obtain. One of the few sources of winter krill population data is from commercial vessels. We examined length-frequency data of adult krill (>35 mm total body length) obtained from commercial vessels in the Scotia-Weddell region and compared our results with those obtained from a combination of science and commercial sampling operations carried out in this region at other times of the year. Our analyses revealed body-length shrinkage in adult females but not males during overwinter, based on both the tracking of modal size classes over seasons and sex-ratio patterns. Other explanatory factors, such as differential mortality, immigration and emigration, could not explain the observed differences. The same pattern was also observed at South Georgia and in the Western Antarctic Peninsula. Fitted seasonally modulated von Bertalanffy growth functions predicted a pattern of overwintering shrinkage in all body-length classes of females, but only stagnation in growth in males. This shrinkage most likely reflects morphometric changes resulting from the contraction of the ovaries and is not necessarily an outcome of winter hardship. The sex-dependent changes that we observed need to be incorporated into life cycle and population dynamic models of this species, particularly those used in managing the fishery. KEY WORDS: Southern Ocean · Population dynamics · Production · Life cycle · Fishery

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: The ability of Antarctic krill Euphausia superba Dana to withstand the overwintering period is critical to their success. Laboratory evidence suggests that krill may shrink in body length during this time in response to the low availability of food. Nevertheless, verification that krill can shrink in the natural environment is lacking because winter data are difficult to obtain. One of the few sources of winter krill population data is from commercial vessels. We examined length-frequency data of adult krill (>35 mm total body length) obtained from commercial vessels in the Scotia-Weddell region and compared our results with those obtained from a combination of science and commercial sampling operations carried out in this region at other times of the year. Our analyses revealed body-length shrinkage in adult females but not males during overwinter, based on both the tracking of modal size classes over seasons and sex-ratio patterns. Other explanatory factors, such as differential mortality, immigration and emigration, could not explain the observed differences. The same pattern was also observed at South Georgia and in the Western Antarctic Peninsula. Fitted seasonally modulated von Bertalanffy growth functions predicted a pattern of overwintering shrinkage in all body-length classes of females, but only stagnation in growth in males. This shrinkage most likely reflects morphometric changes resulting from the contraction of the ovaries and is not necessarily an outcome of winter hardship. The sex-dependent changes that we observed need to be incorporated into life cycle and population dynamic models of this species, particularly those used in managing the fishery. KEY WORDS: Southern Ocean · Population dynamics · Production · Life cycle · Fishery

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Region comprises three sub-regions (FAO Statistical Areas) with very different characteristics. The South Pacific includes the vast and virtually unpopulated Southern Ocean surrounding the Antarctic. It has the world’s largest fisheries off Peru and Chile and some of the world’s best managed fisheries in Australia and New Zealand. The Region has over 27% of the world’s ocean area and over 98% of the Region’s total area of 91 million km2 is ‘open ocean’. The Region contains less than 5% of the global continental shelf area and only a fraction of this area is covered by three large marine ecosystems (the New Zealand Shelf, the Humboldt Current and the Antarctic large marine ecosystems (LMEs). The Humboldt Current System (HCS) is the world’s largest upwelling which provides nutrients for the world’s largest fisheries. The Region also has a high number of seamounts. The marine capture fisheries of the Region produce over 13 million tons annually and an expanding aquaculture industry produces over 1.5 million tons. Peru’s anchoveta fishery provides about half the world’s supply of fish meal and oil, key ingredients of animal and fish feeds. El Niño Southern Oscillations (ENSOs), known more generally as El Niños, can substantially change the species composition of the key small pelagic catches (anchovy, sardine, horse mackerel and jack mackerel) causing production to fluctuate from about 4-8 million tons. Partly due to the lack of upwelling and shelf areas, fisheries production in the Southern Ocean and Area 81 is relatively small but supports economically important commercial and recreational fisheries and aquaculture in New Zealand and in New South Wales (Australia). Krill remains a major underexploited resource, but is also a keystone species in the Antarctic food web. The Region is home to numerous endangered species of whales, seals and seabirds and has a high number of seamounts, vulnerable ecosystems fished for high-value species such as orange roughy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Region comprises three sub-regions (FAO Statistical Areas) with very different characteristics. The South Pacific includes the vast and virtually unpopulated Southern Ocean surrounding the Antarctic. It has the world’s largest fisheries off Peru and Chile and some of the world’s best managed fisheries in Australia and New Zealand. The Region has over 27% of the world’s ocean area and over 98% of the Region’s total area of 91 million km2 is ‘open ocean’. The Region contains less than 5% of the global continental shelf area and only a fraction of this area is covered by three large marine ecosystems (the New Zealand Shelf, the Humboldt Current and the Antarctic large marine ecosystems (LMEs). The Humboldt Current System (HCS) is the world’s largest upwelling which provides nutrients for the world’s largest fisheries. The Region also has a high number of seamounts. The marine capture fisheries of the Region produce over 13 million tons annually and an expanding aquaculture industry produces over 1.5 million tons. Peru’s anchoveta fishery provides about half the world’s supply of fish meal and oil, key ingredients of animal and fish feeds. El Niño Southern Oscillations (ENSOs), known more generally as El Niños, can substantially change the species composition of the key small pelagic catches (anchovy, sardine, horse mackerel and jack mackerel) causing production to fluctuate from about 4-8 million tons. Partly due to the lack of upwelling and shelf areas, fisheries production in the Southern Ocean and Area 81 is relatively small but supports economically important commercial and recreational fisheries and aquaculture in New Zealand and in New South Wales (Australia). Krill remains a major underexploited resource, but is also a keystone species in the Antarctic food web. The Region is home to numerous endangered species of whales, seals and seabirds and has a high number of seamounts, vulnerable ecosystems fished for high-value species such as orange roughy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basal melting of floating ice shelves and iceberg calving constitute the two almost equal paths of freshwater flux between the Antarctic ice cap and the Southern Ocean. The largest icebergs (>100 km2) transport most of the ice volume but their basal melting is small compared to their breaking into smaller icebergs that constitute thus the major vector of freshwater. The archives of nine altimeters have been processed to create a database of small icebergs (<8 km2) within open water containing the positions, sizes, and volumes spanning the 1992–2014 period. The intercalibrated monthly ice volumes from the different altimeters have been merged in a homogeneous 23 year climatology. The iceberg size distribution, covering the 0.1–10,000 km2 range, estimated by combining small and large icebergs size measurements follows well a power law of slope −1.52 ± 0.32 close to the −3/2 laws observed and modeled for brittle fragmentation. The global volume of ice and its distribution between the ocean basins present a very strong interannual variability only partially explained by the number of large icebergs. Indeed, vast zones of the Southern Ocean free of large icebergs are largely populated by small iceberg drifting over thousands of kilometers. The correlation between the global small and large icebergs volumes shows that small icebergs are mainly generated by large ones breaking. Drifting and trapping by sea ice can transport small icebergs for long period and distances. Small icebergs act as an ice diffuse process along large icebergs trajectories while sea ice trapping acts as a buffer delaying melting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The time-mean Argo float displacements and the World Ocean Atlas 2009 temperature–salinity climatology are used to obtain the total, top to bottom, mass transports. Outside of an equatorial band, the total transports are the sum of the vertical integrals of geostrophic- and wind-driven Ekman currents. However, these transports are generally divergent, and to obtain a mass conserving circulation, a Poisson equation is solved for the streamfunction with Dirichlet boundary conditions at solid boundaries. The value of the streamfunction on islands is also part of the unknowns. This study presents and discusses an energetic circulation in three basins: the North Atlantic, the North Pacific, and the Southern Ocean. This global method leads to new estimations of the time-mean western Eulerian boundary current transports maxima of 97 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) at 60°W for the Gulf Stream, 84 Sv at 157°E for the Kuroshio, 80 Sv for the Agulhas Current between 32° and 36°S, and finally 175 Sv for the Antarctic Circumpolar Current at Drake Passage. Although the large-scale structure and boundary of the interior gyres is well predicted by the Sverdrup relation, the transports derived from the wind stress curl are lower than the observed transports in the interior by roughly a factor of 2, suggesting an important contribution of the bottom torques. With additional Argo displacement data, the errors caused by the presence of remaining transient terms at the 1000-db reference level will continue to decrease, allowing this method to produce increasingly accurate results in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High time resolution aerosol mass spectrometry measurements were conducted during a field campaign at Mace Head Research Station, Ireland, in June 2007. Observations on one particular day of the campaign clearly indicated advection of aerosol from volcanoes and desert plains in Iceland which could be traced with NOAA Hysplit air mass back trajectories and satellite images. In conjunction with this event, elevated levels of sulphate and light absorbing particles were encountered at Mace Head. While sulphate concentration was continuously increasing, nitrate levels remained low indicating no significant contribution from anthropogenic pollutants. Sulphate concentration increased about 3.8 g/m3 in comparison with the background conditions. Corresponding sulphur flux from volcanic emissions was estimated to about 0.3 TgS/yr, suggesting that a large amount of sulphur released from Icelandic volcanoes may be distributed over distances larger than 1000 km. Overall, our results corroborate that transport of volcanogenic sulphate and dust particles can significantly change the chemical composition, size distribution, and optical properties of aerosol over the North Atlantic Ocean and should be considered accordingly by regional climate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1995 and 1997, two major Australian expeditions travelled to Antarctica. They were the most heavily-reported Antarctican events of their two years: they were charged with the public production of Australian Antarctic spatiality. Both published exploration narratives: Don and Margie McIntyre’s Expedition Icebound generated an illustrated coffee-table book, Two Below Zero: A Year Alone in Antarctica, and the Spirit of Australia South Pole Expedition published its narrative as a video titled Walking on Ice: The History-Making Expedition to the South Pole. Yet, despite the fact that the two polar trips took place during the same period, their spatialities are markedly different. Walking on Ice is a mobile narrative of imperial exploration, while Two Below Zero is a static spatial story of colonial settlement. How polar mobility and relative immobility figure in Australia’s perceptions of, and claim to, nearly half of Antarctica is the focus of this chapter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean processes are dynamic and complex events that occur on multiple different spatial and temporal scales. To obtain a synoptic view of such events, ocean scientists focus on the collection of long-term time series data sets. Generally, these time series measurements are continually provided in real or near-real time by fixed sensors, e.g., buoys and moorings. In recent years, an increase in the utilization of mobile sensor platforms, e.g., Autonomous Underwater Vehicles, has been seen to enable dynamic acquisition of time series data sets. However, these mobile assets are not utilized to their full capabilities, generally only performing repeated transects or user-defined patrolling loops. Here, we provide an extension to repeated patrolling of a designated area. Our algorithms provide the ability to adapt a standard mission to increase information gain in areas of greater scientific interest. By implementing a velocity control optimization along the predefined path, we are able to increase or decrease spatiotemporal sampling resolution to satisfy the sampling requirements necessary to properly resolve an oceanic phenomenon. We present a path planning algorithm that defines a sampling path, which is optimized for repeatability. This is followed by the derivation of a velocity controller that defines how the vehicle traverses the given path. The application of these tools is motivated by an ongoing research effort to understand the oceanic region off the coast of Los Angeles, California. The computed paths are implemented with the computed velocities onto autonomous vehicles for data collection during sea trials. Results from this data collection are presented and compared for analysis of the proposed technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim- inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autonomous underwater gliders are robust and widely-used ocean sampling platforms that are characterized by their endurance, and are one of the best approaches to gather subsurface data at the appropriate spatial resolution to advance our knowledge of the ocean environment. Gliders generally do not employ sophisticated sensors for underwater localization, but instead dead-reckon between set waypoints. Thus, these vehicles are subject to large positional errors between prescribed and actual surfacing locations. Here, we investigate the implementation of a large-scale, regional ocean model into the trajectory design for autonomous gliders to improve their navigational accuracy. We compute the dead-reckoning error for our Slocum gliders, and compare this to the average positional error recorded from multiple deployments conducted over the past year. We then compare trajectory plans computed on-board the vehicle during recent deployments to our prediction-based trajectory plans for 140 surfacing occurrences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, ocean scientists have started to employ many new forms of technology as integral pieces in oceanographic data collection for the study and prediction of complex and dynamic ocean phenomena. One area of technological advancement in ocean sampling if the use of Autonomous Underwater Vehicles (AUVs) as mobile sensor plat- forms. Currently, most AUV deployments execute a lawnmower- type pattern or repeated transects for surveys and sampling missions. An advantage of these missions is that the regularity of the trajectory design generally makes it easier to extract the exact path of the vehicle via post-processing. However, if the deployment region for the pattern is poorly selected, the AUV can entirely miss collecting data during an event of specific interest. Here, we consider an innovative technology toolchain to assist in determining the deployment location and executed paths for AUVs to maximize scientific information gain about dynamically evolving ocean phenomena. In particular, we provide an assessment of computed paths based on ocean model predictions designed to put AUVs in the right place at the right time to gather data related to the understanding of algal and phytoplankton blooms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data collection using Autonomous Underwater Vehicles (AUVs) is increasing in importance within the oceano- graphic research community. Contrary to traditional moored or static platforms, mobile sensors require intelligent planning strategies to manoeuvre through the ocean. However, the ability to navigate to high-value locations and collect data with specific scientific merit is worth the planning efforts. In this study, we examine the use of ocean model predictions to determine the locations to be visited by an AUV, and aid in planning the trajectory that the vehicle executes during the sampling mission. The objectives are: a) to provide near-real time, in situ measurements to a large-scale ocean model to increase the skill of future predictions, and b) to utilize ocean model predictions as a component in an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. We present an algorithm designed to generate paths for AUVs to track a dynamically evolving ocean feature utilizing ocean model predictions. This builds on previous work in this area by incorporating the predicted current velocities into the path planning to assist in solving the 3-D motion planning problem of steering an AUV between two selected locations. We present simulation results for tracking a fresh water plume by use of our algorithm. Additionally, we present experimental results from field trials that test the skill of the model used as well as the incorporation of the model predictions into an AUV trajectory planner. These results indicate a modest, but measurable, improvement in surfacing error when the model predictions are incorporated into the planner.