968 resultados para Anas acuta
Resumo:
Good faunal preservation in the upper part of the Planorotatites pseudomenardii Zone at Deep Sea Drilling Project Site 605, northwestern Atlantic, allows a biometric analysis of the upper Paleocene planktonic foraminiferal species Planorotatites pseudomenardii (Belli), a keeled species that probably developed from a middle Paleocene unkeeled Planorotalites form. Multivariate analysis shows a consistent separation of all Planorotatites specimens into two groups, which are differentiated by the presence or absence of a complete keel; other variables are only of minor importance. The keeled group coincides with P. pseudomenardii. We recognize only one unkeeled species, Planorotalites chapmani (Parr), with Planorotalites ehrenbergi (Bolli), Planorotalites imitata (Subbotina), Planorotalites planoconica (Subbotina), Planorotalites troelseni (Loeblich and Tappan), and Planorotalites hausbergensis (Gohrbrandt) as junior synonyms. P. chapmani ranges from the middle Paleocene to at least the top of the upper Paleocene. The morphology of P. pseudomenardii does not change significantly, and although the frequency of Planorotalites is variable, the proportion of P. pseudomenardii to all Planorotalites varies only slightly around 65% in the upper two-thirds of its range at Site 605. However, in the top 1.5 m of its range the proportion of P. pseudomenardii decreases; in the same section, all Planorotalites specimens show a reduction in the size of their tests, suggesting that a temporary change in environmental conditions led to the exit of P. pseudomenardii\ in Magnetozone C24R at Site 605-apparently higher than expected from current standard zonations. Unkeeled Planorotalites, in contrast to R. pseudomenardii, persisted and regained normal size. The entry of P. pseudomenardii at Site 605 cannot be described in the same detail because of low frequencies of Planorotalites specimens and an erratic distribution of P. pseudomenardii in the lower part of its range. Many of the washed residues of the samples from these sediments are dominated by radiolarians, and the poorly preserved foraminiferal faunas may have abundant benthics, indicating carbonate dissolution. The initially low frequencies of P pseudomenardii relative to the unkeeled Planorotalites show a strong negative correlation with the total amount of radiolarians per sample and could be the result of preferential preservation, as well as of the same environmental conditions that caused the abundance of radiolarians.
Resumo:
A thick, apparently continuous section recording events of the latest Paleocene thermal maximum in a neritic setting was drilled at Bass River State Forest, New Jersey as part of ODP Leg 174AX [Miller, Sugarman, Browning et al., 1998]. Integrated nannofossil and magneto-stratigraphy provides a firm chronology supplemented by planktonic foraminiferal biostratigraphy. This chronologic study indicates that this neritic section rivals the best deep-sea sections in providing a complete record of late Paleocene climatic events. Carbon and oxygen isotopes measured on benthic foraminifera show a major (4.0% in carbon, 2.3% in oxygen) negative shift correlative with the global latest Paleocene carbon isotope excursion (CIE). A sharp increase in kaolinite content coincides with the isotope shift in the Bass River section, analogous to increases found in several other records. Carbon and oxygen isotopes remain low and kaolinite content remains high for the remainder of the depositional sequence above the CIE (32.5 ft, 9.9 m), which we estimate to represent 300-500 k.y. We interpret these data as indicative of an abrupt shift to a warmer and wetter climate along the North American mid-Atlantic coast, in concert with global events associated with the CIE.
Resumo:
Among the groups of oceanic microfossils, only Radiolaria occur in abundances and preservation states sufficient to provide biostratigraphic control for restricted intervals within sediments recovered in Hole 1223A. The distribution of these microfossils has been divided into four major intervals, A-D. Radiolaria distribution Interval A occupies the depth range 0-3.0 meters below seafloor (mbsf), where the abundance of specimens is very low and preservation is poor. Radiolaria distribution Interval B occupies the depth range 3.02-7.1 mbsf. Radiolaria in Interval B are locally rare to abundant and well preserved, and assemblages range in age from pure early Eocene to early Eocene admixed with late Neogene taxa. Radiolaria distribution Interval C occupies the depth range 7.1-36.99 mbsf and is characterized by sediments either barren of microfossils or containing extremely rare early Eocene specimens. Radiolaria distribution Interval D occupies the depth range 36.99-38.7 mbsf (base of the recovered sedimentary section), where early Eocene Radiolaria are present in rare to common frequencies, but opal-A to opal-CT recrystallization has degraded the preservation state. The late Neogene assemblage of Radiolaria distribution Interval B is dated at 1.55-2.0 Ma, based on occurrences of Eucyrtidium matuyamai, Lamprocyclas heteroporos, and Theocorythium trachelium trachelium. The early Eocene assemblage of Radiolaria distribution Intervals B and D is somewhat problematically assigned to the Buryella clinata Zone.
Resumo:
The vertical distribution of living (Rose Bengal stained) benthic foraminifers was determined in the upper 15 cm of sediment cores taken along transects extending from the continental shelf of Spitsbergen through the Eurasian Basin of the Arctic Ocean. Cores taken by a multiple corer were raised from 50 stations with water depths between 94 and 4427 m, from areas with moderate primary production values to areas that are among the least productive ones in the world. We believe, that in the Arctic Ocean the vertical distribution of living foraminifers is determined by the restricted availability of food. Live foraminiferal faunas are dominated by potentially infaunal species or epifaunal species. Species confined to the infaunal microhabitat are absent in Arctic sediments that we examined, and predominantly infaunal living species are nowhere dominant. In general, an infaunal mode of life is restricted to the seasonally ice-free areas and thus to areas with at least moderate primary production during the summer period. Under the permanent ice cover living species are usually restricted to the top centimeter of the sediment surface, even though some are able to dwell deeper in the sediment under ice-free conditions.
Resumo:
Description based on: No. 3 (Aug. 28, 1895); title from caption.
Resumo:
Includes indexes.
Resumo:
"Ex bibliotheca R. Toinet", with manuscript note inserted.
Resumo:
Mode of access: Internet.