963 resultados para Anaerobic thieshold
Resumo:
Despite improvements in connectology, peritoneal dialysis (PD) - associated peritonitis contributes significantly to morbidity and modality failure in patients maintained on PD therapy. A broad spectrum of organisms -gram-positive, gram-negative, fungal, anaerobic - are involved in this complication. In addition, a significant percentage of episodes involve polymicrobial and culture-negative infection. Technological advances are being developed to minimize the incidence of access-related complications such as peritonitis. Many traditional factors such as exit-site infection and poor technique have been already identified. In the present review, we discuss the geographic, patient selection, and clinical issues that can affect peritonitis rates in different areas of the world and in different centers in the same area.
Resumo:
Introduction - the aim of this study was to analyze the validity of the critical speed (CS) to determine the speed corresponding to 4 mmol 1(-1) of blood lactate (S4) and the speed in a 30 min test (S30min) of swimmers aged 10-15 years.Synthesis of facts - CS, S4 and S30min were determined in 12 swimmers (eight boys and four girls) divided into two groups: 10-12 years and 13-15 years.Conclusion - CS was a good predictor of aerobic performance (S30min) independent of the chronological age, providing practical information about the aerobic performance state of young swimmers. (C) 2002, Editions scientifiques et medicates, Elsevier SAS. All rights reserved.
Kinetics and mechanism of the induced redox reaction of [Ni(cyclam)](2+) promoted by SO5 center dot-
Resumo:
Oxidation of [Ni(cyclam)](2+), cyclam = 1,4,8,11-tetraazacyclotetradecane, accelerated by sulfur dioxide, was studied spectrophotometrically by following the formation of [Ni(cyclam)](3+) under the conditions: [Ni(cyclam)](2+) = 6.0 x 10(-3) M; initial [Ni(cyclam)](3+) = 8.0 x 10(-6) M; [cyclam] = 6.0 x 10(-3) M; [SO2] = (1.0-5.0) x 10(-4) M and 1.0 M perchloric acid in oxygen saturated solutions at 25.0 degrees C and ionic strength = 1.0 M. The oxidation reaction exhibits autocatalytic behavior in which the induction period depends on the initial Ni(III) concentration. A kinetic study of the reduction of Ni(III) by SO2 under anaerobic conditions, and the oxidation of Ni(II), showed that the rate-determining step involves reduction of Ni(III) by SO2 to produce the SO3.- radical, which rapidly reacts with dissolved oxygen to produce SO5.- and rapidly oxidizes Ni(II). The results clearly show a redox cycling process which depends on the balance of SO2 and oxygen concentrations in solution.