965 resultados para Amplitude modulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We experimentally revisit a technique of low-cost multiparameter monitor for optical performance monitoring based on low frequency polarization modulation. A simplified calibration procedure, which significantly reduces the mathematical complexity and processing effort is proposed. Validation is achieved by carrying out relative optical power, wavelength, and differential group delay measurements. (C) 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett 54:18201824, 2012; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26956

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limited information is available regarding the modulation of genes involved in the innate host response to Paracoccidioides brasiliensis, the etiologic agent of paracoccidioidomycosis. Therefore, we sought to characterize, for the first time, the transcriptional profile of murine bone marrow-derived dendritic cells (DCs) at an early stage following their initial interaction with P. brasiliensis. DCs connect innate and adaptive immunity by recognizing invading pathogens and determining the type of effector T-cell that mediates an immune response. Gene expression profiles were analyzed using microarray and validated using real-time RT-PCR and protein secretion studies. A total of 299 genes were differentially expressed, many of which are involved in immunity, signal transduction, transcription and apoptosis. Genes encoding the cytokines IL-12 and TNF-alpha, along with the chemokines CCL22, CCL27 and CXCL10, were up-regulated, suggesting that P. brasiliensis induces a potent proinflammatory response in DCs. In contrast, pattern recognition receptor (PRR)-encoding genes, particularly those related to Toll-like receptors, were down-regulated or unchanged. This result prompted us to evaluate the expression profiles of dectin-1 and mannose receptor, two other important fungal PRRs that were not included in the microarray target cDNA sequences. Unlike the mannose receptor, the dectin-1 receptor gene was significantly induced, suggesting that this beta-glucan receptor participates in the recognition of P. brasiliensis. We also used a receptor inhibition assay to evaluate the roles of these receptors in coordinating the expression of several immune-related genes in DCs upon fungal exposure. Altogether, our results provide an initial characterization of early host responses to P. brasiliensis and a basis for better understanding the infectious process of this important neglected pathogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibromyalgia (FM) is characterized by chronic non-inflammatory widespread pain (CWP) and changes in sympathetic function. In attempt to elucidate the pathophysiological mechanisms of FM we used a well-established CWP animal model. We aimed to evaluate changes in cardiac autonomic balance and baroreflex function in response to CWP induction in rats. CWP was induced by two injections of acidic saline (pH 4.0, n = 8) five days apart into the left gastrocnemius muscle. Control animals were injected twice with normal saline (pH 7.2, n = 6). One day after the second injection of acidic saline or normal saline, the animals had pulse interval (PI) and systolic arterial pressure (SAP) variability, and spontaneous baroreflex sensitivity (BRS) evaluated. After induction of CWP, there was an increase of power in the low frequency (LF) band of PI spectrum (12.75 +/- 1.04 nu), a decrease in the high frequency (HF) band (87.25 +/- 1.04 nu) and an increase of LF/HF ratio (0.16 +/- 0.01), when compared to control animals (7.83 +/- 1.13 nu LF; 92.16 +/- 1.13 nu HF; 0.08 +/- 0.01 LF/HF). In addition, there was an increase of power in the LF band of SAP spectrum (7.93 +/- 1.39 mmHg(2)) when compared to control animals (2.97 +/- 0.61 mmHg(2)). BRS was lower in acidic saline injected rats (0.59 +/- 0.06 ms/mmHg) when compared to control animals (0.71 +/- 0.03 ms/mmHg). Our results showed that induction of CWP in rats shifts cardiac sympathovagal balance towards sympathetic predominance and decreases BRS. These data corroborate findings in humans with FM. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mezzarane RA, Kohn AF, Couto-Roldan E, Martinez L, Flores A, Manjarrez E. Absence of effects of contralateral group I muscle afferents on presynaptic inhibition of Ia terminals in humans and cats. J Neurophysiol 108: 1176-1185, 2012. First published June 6, 2012; doi:10.1152/jn.00831.2011.-Crossed effects from group I afferents on reflex excitability and their mechanisms of action are not yet well understood. The current view is that the influence is weak and takes place indirectly via oligosynaptic pathways. We examined possible contralateral effects from group I afferents on presynaptic inhibition of Ia terminals in humans and cats. In resting and seated human subjects the soleus (SO) H-reflex was conditioned by an electrical stimulus to the ipsilateral common peroneal nerve (CPN) to assess the level of presynaptic inhibition (PSI_control). A brief conditioning vibratory stimulus was applied to the triceps surae tendon at the contralateral side (to activate preferentially Ia muscle afferents). The amplitude of the resulting H-reflex response (PSI_conditioned) was compared to the H-reflex under PSI_control, i.e., without the vibration. The interstimulus interval between the brief vibratory stimulus and the electrical shock to the CPN was -60 to 60 ms. The H-reflex conditioned by both stimuli did not differ from that conditioned exclusively by the ipsilateral CPN stimulation. In anesthetized cats, bilateral monosynaptic reflexes (MSRs) in the left and right L 7 ventral roots were recorded simultaneously. Conditioning stimulation applied to the contralateral group I posterior biceps and semitendinosus (PBSt) afferents at different time intervals (0-120 ms) did not have an effect on the ipsilateral gastrocnemius/soleus (GS) MSR. An additional experimental paradigm in the cat using contralateral tendon vibration, similar to that conducted in humans, was also performed. No significant differences between GS-MSRs conditioned by ipsilateral PBSt stimulus alone and those conditioned by both ipsilateral PBSt stimulus and contralateral tendon vibration were detected. The present results strongly suggest an absence of effects from contralateral group I fibers on the presynaptic mechanism of MSR modulation in relaxed humans and anesthetized cats.