967 resultados para Ammonium perchlorate.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

瑞香狼毒(Stellera chamaejasme L.)是瑞香科(Thymelaeaceae)狼毒属的一种多年生野草,有毒。据调查,从20 世纪60 年代开始至今,狼毒在青藏高原东缘的高寒草甸上不断蔓延、密度不断变大,在一些地段甚至成为优势物种。有关狼毒在高寒草甸蔓延的生态系统效应的研究尚未见报道。本文从系统碳、氮循环的角度,分别研究狼毒在生长和非生长季节对高寒草甸生态系统的影响。同时,从花粉化感的角度,深入研究狼毒对当地同花期物种有性繁殖的影响。系统地研究高寒草甸生态系统物质循环过程,特别是非生长季节微生物和土壤碳氮库的动态变化,有助于揭示狼毒在系统物质循环方面的“物种效应”以及这种效应的季节变化,为丰富有关高海拔生态系统,特别是其非生长季的物质循环的科学理论做出贡献。同时,碳氮循环和花粉化感的研究还有助于深刻地理解狼毒作为一种入侵性很强的杂草的特殊的蔓延机制,从而为狼毒的有效防治、高寒草甸的科学管理提供依据。 针对狼毒在青藏高原高寒草甸上蔓延的生态系统碳氮循环方面的影响,开展以下2 方面的研究:(1)在生长季,研究松潘县尕米寺附近(北纬32°53',东经103°40',海拔3190 m)的两种地形(平地和阳坡)条件下狼毒对土壤碳氮循环影响及可能的原因。狼毒和其它几个主要物种(圆穗蓼(Polygonummacrophyllum D. Don var. Macrophyllum),草地早熟禾(Poa pretensis L.),四川嵩草(Kobresia setchwanensis Hand.-Maizz.),鹅绒委陵菜(Potentilla anserina L.var. anserine)和鳞叶龙胆(Gentiana squarrosa Ledeb.)的地上凋落物产量以及地上凋落物和根的化学组成被测量。在有-无狼毒斑块下,各种土壤的库(比如,铵态氮、硝态氮、无机磷和微生物生物量)和周转率(包括净矿化、净硝化、总硝化、反硝化和微生物呼吸速率)被测量和比较。(2)在非生长季节,尤其是春季冻融交替期,选取了两个研究地点——尕米寺和卡卡沟(北纬32°59',东经103°41',海拔3400 m),分别测定有狼毒和无狼毒斑块下土壤微生物生物量碳和氮、可溶性有机碳和氮以及铵态氮和硝态氮的动态变化。同时,分别在上述两个地点有-无狼毒的样地上,研究6 个主要物种(狼毒、圆穗蓼、草地早熟禾、四川嵩草、鹅绒委陵菜和鳞叶龙胆)从秋季开始、为期1 年的凋落物分解过程。 针对狼毒花粉化感对同花期其它物种可能的花粉化感作用开展以下工作:在实验室中,用一系列浓度的狼毒花粉水浸提液对与它同花期的其它物种以及自身花粉进行测试,测定花粉萌发率;在野外自然条件下的其它物种的柱头上施用上述浓度的狼毒花粉水浸提液,观测种子结实率,同时,观察狼毒花粉的种间花粉散布数量。 生长季节的研究结果表明,狼毒地上凋落物氮含量比其它几个主要物种更高,而木质素-总氮比更低。狼毒显著地增加其斑块下表层土壤中有机质的含量,而有-无狼毒的亚表层土壤在有机碳和总磷方面没有显著差异。狼毒表土中硝态氮含量在平地和阳坡比无狼毒土壤分别高113%和90%。狼毒表土中微生物生物量碳和氮量显著高于无狼毒表土。无论是平地还是阳坡,狼毒土壤的总硝化和微生物呼吸速率显著高于无狼毒土壤;而它们的反硝化速率只在平地有显著的差异。狼毒与其它物种间地上凋落物的产量和质量的差异可能是导致有-无狼毒土壤碳氮循环差异的原因。我们假设,狼毒可能通过增加贫氮生态系统土壤中的有效氮含量提高其入侵能力。 非生长季的研究结果表明,在青藏高原东缘的高寒草甸上,土壤微生物生3物量在11 月的秋-冬过渡期达到第一个峰值;在春季的冻融交替期,微生物生物量达到第二个峰值后又迅速降低。无机氮以及可溶性有机碳氮与微生物生物量有相似的变化过程。微生物碳氮比呈现显著的季节性变化。隆冬季节的微生物生物量碳氮比显著高于生长旺季的微生物碳氮比。这种变化可能暗示冬、夏季微生物的群落组成和对资源的利用有所不同。有-无狼毒斑块下土壤微生物和土壤碳、氮库一般只在秋-冬过渡期有显著差异,有狼毒土壤微生物生物量和土壤碳、氮库显著高于无狼毒土壤;而在之后的冬季和春季没有显著差异。所有6 个物种凋落物在非生长季分解率为24%-50%,均高于生长季的10%到30%。其中在秋-冬过渡期,凋落物开始埋藏的两周时间内,分解最快,达10%-20%。不同物种凋落物全年的分解率和分解过程有显著差异。圆穗蓼在全年的分解都较缓慢(非生长季26%,生长季15%),草地早熟禾和四川嵩草等全年的分解速率比较均匀(非生长季和生长季均为30%,非生长季略高),而狼毒在非生长季分解较快(约50%),而在接下来的生长季分解变得缓慢(约12%)。所有物种的凋落物氮含量在非生长季下降,而在随后的生长季上升。 实验室的花粉萌发试验证明,狼毒花粉对自身花粉萌发没有自毒作用,而其它受试的所有物种(圆穗蓼,秦艽(Gentiana macrophylla Pall. var. fetissowii),湿生扁蕾(Gentianopsis paludosa (Hook. f.) Ma var. paludosa),鳞叶龙胆,椭圆叶花锚(Halenia elliptica D. Don var. elliptica),蓝钟花(Cyananthus hookeri C. B.Cl. var. grandiflorus Marq.),小米草(Euphrasia pectinata Ten.),川西翠雀花(Delphinium tongolense Franch.),高原毛茛(Ranunculus tanguticus (Maxim.)Ovcz. var. tanguticus)和鹅绒委陵菜)的花粉萌发率随着狼毒花粉浸提液浓度的增加呈显著的非线性降低。大约3 个狼毒花粉的浸提液就可以抑制受试的多数物种的50%的花粉萌发。在鳞叶龙胆和小米草柱头上狼毒花粉的数量分别为5.76 个和3.35 个。狼毒花粉散布数量的差异最可能的原因在于是否有共同的传粉昆虫。花的形状(辐射对称VS 左右对称)、植株或花的密度以及花期重叠性可以部分解释这种差异。在野外试验中,我们发现6 个物种(秦艽、湿生扁蕾、鳞叶龙胆、椭圆叶花锚、蓝钟花和小米草)的种子结实率随狼毒花粉浸提液浓度的增加呈显著的非线性降低。鳞叶龙胆和小米草柱头上狼毒花粉的数量(分别是5.76 个和3.35 个)分别达到了抑制它们63%和55%种子结实率的水平。因此,狼毒对鳞叶龙胆和小米草可能存在明显的花粉化感抑制作用。狼毒周围的物种可能通过花期在季节或昼夜上的分异避免受到狼毒花粉化感的影响或者通过无性繁殖来维持种群繁衍,因此狼毒通过花粉化感作用对其周围物种繁殖的影响程度还需要进一步地研究。如果狼毒的花粉化感抑制作用确实存在,那么它可能成为一种自然选择压力,进而影响物种的进化。 Stellera chamaejasme L., a perennial toxic weed, has emerged and quicklydominated and spread in the high-frigid meadow on the eastern Tibetan Plateau ofChina since the 1960s. In the present study, effects of S. chamaejasme on carbon andnitrogen cycles on the high-frigid meadow on the eastern Qinghai-Tibetan Plateau ingrowing and non-growing season, and its pollen allelopathic effects on the sympatricspecies were determined. The present study that focused on carbon and nitrogencycles, especially on microbial biomass and pools of carbon and nitrogen innon-growing season, could profoundly illuminate plant-species effects on carbon andnutrient cycles and its seasonal pattern and help to understand spread mechanism ofS. chamaejasme as an aggressive weed. The present study also contributed to furtherunderstand carbon and nutrient cycles on alpine regions in non-growing season andprovide a basis on weed control of S. chamaejasme and scientific management in thehigh-frigid ecosystem. Effects of S. chamaejasme on carbon and nitrogen cycles on the high-frigidmeadow on the eastern Qinghai-Tibetan Plateau were determined. The study couldbe divided into two parts. (1) In the growing season, we quantified the effects of S.chamaejasme on carbon and nitrogen cycles in two types of topographic habitats, theflat valley and the south-facing slope, where S. chamaejasme was favored to spreadlitter and root were measured to explain the likely effects of S. chamaejasme on soilcarbon and nutrient cycles. The sizes of various soil pools, e.g. nitrite, ammonium,inorganic phosphorus and microbial biomass, and turnover rates including netmineralization, gross nitrification, denitrification and microbial respiration weredetermined. (2) In the non-growing season study, microbial biomass carbon andnitrogen, soluble organic carbon and nitrogen, ammonium and nitrate weredetermined through the non-growing season, especially in the processes offreeze-thaw of spring in two high-frigid sites, i.e. Kaka valley and Gami temple, onthe eastern Qinghai-Tibetan Plateau. Meanwhile, litter decomposition of six commonspecies, including Stellera chamaejasme L., Polygonum macrophyllum D. Don var.Macrophyllum, Poa pretensis L., Kobresia setchwanensis L., Potentilla anserina L.var. anserine and Gentiana squarrosa Ledeb., were also examined under theabove-mentioned experimental design through one whole-year, which began in theautumn in 2006. In the study of pollen allelopathy, several work, including in vitro study oneffects of extract of pollen from S. chamaejasme on sympatric species and pollenfrom itself, field experiments on effects of pollen extract with the same regime ofconcentrations on seed set and field observation on heterospecific pollen transfer ofS. chamaejasme to six of those sympatric species has been done. The results in the growing season showed that aboveground litter of S.chamaejasme had higher tissue nitrogen and lower lignin: nitrogen ratio than thoseco-occurring species. S. chamaejasme significantly increased topsoil organic matter,whereas no significant differences were found for organic C and total P in subsoilbetween under-Stellera and away-Stellera locations. The nitrate in Stellera topsoilwas 113% and 90% higher on the flat valley and on the south-facing slope,respectively. Both microbial biomass C and N were significantly higher in Stelleratopsoil. Gross nitrification and microbial respiration were significantly higher inStellera topsoil both on the flat valley and on the south-facing slope, whereassignificant differences of denitrification were found only on the flat valley. Thedifferences in the quantity and quality of aboveground litter are a likely mechanismresponsible for the changes of soil variables. We assumed that S. chamaejasme couldenhance their spread by increasing nutrient availability in N-deficient ecosystems. The results in the non-growing season showed that microbial biomass achievedthe first summit in late autumn and early winter on the eastern Qinghai-TibetanPlateau. In the stages of freeze-thaw of spring, microbial biomass firstly achieved thesecond summit and subsequently sharply decreased. Inorganic nitrogen, solubleorganic carbon and nitrogen had a similar dynamics with that of microbial biomass.Ratio of microbial biomass carbon and nitrogen had an obviously seasonal pattern.The highest microbial C: N were in the non-growing season, which weresignificantly higher than those in the growing season. The seasonal pattern inmicrobial biomass C: N suggested that large changes in composition of microbialpopulation and in resources those used by microbes between summer and winter.Generally, microbial biomass and pools size of carbon and nitrogen in Stellera soilwere significantly higher than those under adjacent locations in late autumn andearly winter, but there were not significant differences in winter and in spring. Litterof all the focal species (Stellera chamaejasme L., Polygonum macrophyllum D. Donvar. Macrophyllum, Poa pretensis L., Kobresia setchwanensis Hand.-Maizz.,Potentilla anserina L. var. anserine and G. squarrosa Ledeb.) decomposed about24%-50% in the non-growing season, which were higher than those in the growingseason (ranged from 10% to 30%). Litter decomposed 10%-20% within the first twoweeks in late autumn and early winter. Significant differences in the whole-yeardecomposition rate and in the processes of decomposition were found among species.Polygonum macrophyllum decomposed slowly through the whole year (26% and15% in the non-growing season and in the growing season, respectively). Certainspecies, such as P. pretensis L. and K. setchwanensis, decomposed at a similar rate(30% both in the non-growing and in the growing season, slightly higher in the8growing season than those in the growing season), whereas S. chamaejasmedecomposed more rapidly (about 50%) in the non-growing season and subsequentlydecomposition became slow (about 12%) in the growing season. Litter nitrogencontents of all the focal species firstly decreased in the non-growing season and thenincreased in the growing season. In vitro experiments of pollen allelopathy, the results showed that pollen from S.chamaejasme was not autotoxic, whereas pollen germination in all the sympatricspecies (Polygonum macrophyllum D. Don var. Macrophyllum, Gentianamacrophylla Pall. var. fetissowii, Gentianopsis paludosa (Hook. f.) Ma var. paludosa,Gentiana squarrosa Ledeb., Halenia elliptica D. Don var. elliptica, Cyananthushookeri C. B. Cl. var. grandiflorus Marq., Euphrasia pectinata Ten., Delphiniumtongolense Franch., Ranunculus tanguticus (Maxim.) Ovcz. var. tanguticus andPotentilla anserina L. var. anserina) decreased nonlinearly as the increasingconcentrations of extract of pollen from S. chamaejasme. Pollen Extract of threepollens from S. chamaejasme generally inhibited 50% pollen germination of most ofthe focal species. 5.76 and 3.35 pollens from S. chamaejasme were observed in fieldon stigmas of G. squarrosa and E. pectinata, respectively. Differences inheterospecific pollen transfer of S. chamaejasme could be attributed to the primaryreason whether they shared common pollinators. Flower morphology (e.g.zygomorphic or actinomorphic), plant or floral density and concurrence in floweringphonologies could explain, in part, the differences in heterospecific pollen transfer.In field experiments, the results showed that seed set in six sympatric species(Gentiana macrophylla Pall. var. fetissowii, Gentianopsis paludosa (Hook. f.) Mavar. paludosa, Gentiana squarrosa Ledeb., Halenia elliptica D. Don var. elliptica,Cyananthus hookeri C. B. Cl. var. grandiflorus Marq. and Euphrasia pectinata Ten.)decreased nonlinearly as the increasing concentrations of extract of pollen from S.chamaejasme. According to the nonlinear curves, the amounts of pollens from S.chamaejasme on stigmas of G. squarrosa and of E. pectinata (i.e. 5.76 grains and3.35 grains, respectively) could reduce 63% and 55% seed set of G. squarrosa and ofE. pectinata, respectively. Thus, allelopathic effects of S. chamaejasme on G.squarrosa and E. pectinata could be realistic. The sympatric species of S.chamaejasme could avoid pollen allelopathy of S. chamaejasme to sustainthemselves. This highlights the need to study how much pollen allelopathy in S.chamaejasme influences the sympatric species through divergence in seasonal ordiurnal flowering phonologies or through asexual reproduction. If pollen allelopathyin S. chamaejasme was confirmed, it could be as a pressure of natural selection andthus play an important role in species evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

人类活动引起全球大气中温室气体(CO2、CH4、NOx)浓度不断增加,致使地球表面温度在过去的100 年中已经增长了0.74 ± 0.18℃,预计到本世纪末将会增加1.1-6.4℃。此外,氮沉降也是当今社会的重要环境问题,随着经济发展的全球化, 高氮沉降也呈现出全球化趋势。全球气候变暖和氮沉降给陆地生态系统的地上、地下生物学和生物地球化学过程所带来巨大影响越来越引起人们的关注。 本文以川西亚高山针叶林的两个重要树种云杉和油松幼苗为研究对象,采用红外辐射增温(空气增温2.1℃,土壤增温2.6℃)和根部施氮(施氮量25 g N m-2yr-1)的方法,从生长形态、光合作用、抗氧化能力和矿质营养等方面研究这两种幼苗对气候变暖和氮沉降的响应。该实验为室外控制实验,包括四个处理:(1)不增温+不施氮(UU);(2) 不增温+施氮(UF);(3) 增温+不施氮(WU);(4) 增温+施氮(WF)。本研究旨在从生理生化、物质代谢 、生长及形态等不同水平上研究模拟增温和施氮对两种树苗的联合效应,提高我们对全球变化下亚高山针叶林早期更新过程的理解,同时也为森林管理提供科学依据。具体研究结果如下: 单独增温处理显著提高了云杉和油松幼苗的地茎、叶重、茎重、根重以及总生物量;单独施氮处理也增加了两种幼苗的株高和总生物量。而增温和施氮联合作用对两种幼苗生长的影响并不相同,联合作用对云杉幼苗生长指标的正效应显著低于单独施氮处理,但是联合作用比单独增温或施氮更大程度的促进了油松幼苗生物量的积累。 单独增温和施氮都有利于提高云杉和油松叶片中叶绿素含量、净光合速率(A)、最大净光合速率(Amax)、表观量子效率(Φ)、最大光能转化效率(Fv/Fm)和量子产量(Y)。与对两种幼苗生长指标的影响相似,加氮和增温共同作用下油松幼苗的以上光合指标比在单独增温或施氮处理下有更大程度的提高;而联合作用下云杉幼苗叶绿素含量、净光合速率、最大净光合速率、表观量子效率、最大光能转化效率以及量子产量比单独施氮处理明显地降低。 增温和施氮都显著地降低了云杉和油松幼苗针叶组织中活性氧和丙二醛的积累。交互作用降低了云杉幼苗叶片的抗氧化酶活性、脯氨酸和ASA 的含量,却显著提高了油松幼苗SOD、POD、APX 等抗氧化酶的活性,并且对油松幼苗脯氨酸和ASA 积累的促进作用比单一因子更加明显。因此,增温和施氮共同作用下油松幼苗叶片中O2-产生速率、H2O2 及MDA 含量明显降低,而云杉叶片中只有O2-产生速率出现降低趋势。 增温和施氮都降低了云杉体内的P、Ca、Mg 元素的含量,增加了Cu、Zn、Mn 在各器官内的积累。对油松幼苗而言,增温和加氮单独作用也显著降低了Ca 含量增加了Cu、Zn、Mn 的积累,但是不同于云杉幼苗的是P、Mg 也显著增加。增温和施氮联合作用对云杉幼苗体内元素的影响与单一施氮处理或增温处理相似,不同的是比单一因子作用更为明显降低了P、Ca、Mg 含量,增加了植株中N、Cu、Zn、Mn 的含量,但是油松矿质元素含量在联合作用下并没有产生类似于云杉幼苗的双因子叠加效应。 总之,尽管单独增温或者施氮都有利于云杉和油松幼苗生长指标、光合能力以及抗氧化能力的提高。但是,增温和施氮对云杉幼苗生长生理的促进效应非但没有在交互作用下有更大的提高,反而低于单独氮处理。与此不同的是,增温和施氮联合作用比单因子作用更有利于油松幼苗生长及生理指标的提高。 With the continued increase in atmospheric concentrations of greenhouse gases (CO2、CH4、NOx), the mean global surface temperature has increased by about 0.74 ± 0.18℃ over the past century and is predicted to rise by as much as 6.4℃ during this century. Besides global warming, nitrogen deposition is another serious environmental problem caused by human activities, and high nitrogen load has become globalization as a result of global economy development. Global climate warming and nitrogen deposition have induced dramatic alternations in above - and below- ground biology and biogeochemistry process in terrestrial ecosystems, and more and more attention has been invited to those problems. This experiment mainly studies two important species Picea asperata and Pinus tabulaeformis in subalpine coniferous forest of western Sichuan, China. Infared heaters are induced to increase both air and soil temperature by 2.1℃ and 2.6 ℃, respectively. Ammonium nitrate solution (for a total equivalent to 25 g N m-2 year-1) is added to soil surface. There are four treatments in this study: (1) unwarmed unfertilized (UU); (2) unwarmed fertilized (UF); (3) warmed unfertilized (WU); (4) warmed fertilized (WF). This study is conducted to determine the influences of experimental warming and nitrogen fertilization on physiolchemistry, nutrition metabolism, growth and morphology in the two coniferous species seedlings. The current study is favorable for increasing our understanding on the early phase of regeneration behavior in subalpine coniferous forest, and it also provide scientific direction for forest management under future global changes. The results are as follows: Artificial warming alone significantly increased basal diameter, leaf mass, stem mass, root mass and total biomass for Picea asperata and Pinus tabulaeformis seedlings, and single nitrogen fertilization are also favorable for growth of the two species and stimulate plant hight and total biomass. The two species seedlings respond differently to the combination of elevated temperature and nitrogen addition. Warming combined with nitrogen fertilization weakens the positive effects of nitrogen addition for growth of Picea asperata seedlings. However, the combination of elevated temperature and nitrogen fertilization further increase biomass accumulation of Pinus tabulaeformis seedlings. Both elevated temperature alone and nitrogen fertilization alone can increase photosynthetic pigments contents, net photosynthetic rate (A), maximum net photosynthetic rate (Amax), apparent quantity yield (Φ), maximum photochemical efficiency of photosystem II (Fv/Fm) and effective quantum yield (Y). Similarly with growth parameters, the combination of warming and nitrogen addition induced more increment of these above photosynthetic parameters for Pinus tabulaeformis seedlings. However, these photosynthetic parameters of Picea asperata seedlings under the combination of warming and nitrogen addition are lower than those under nitrogen fertilization alone. The levels of active oxygen species (AOS) and malodiadehyde (MDA) in needles of the two coniferous species seedling are obviously decreased by experimental warming or additional nitrogen. Warming combined with nitrogen fertilizer reduces the activities of SOD, CAT and APX, and the contents of proline and ASA of Picea asperata seedlings, but the combination significantly increases activities of these antioxidant enzymes in needlels of Pinus tabulaeformis seedlings and further improves the accumulation of proline and ASA compared to either artificial warming or nitrogen addition. Therefore, the rate of O2 - production, the contents of H2O2 and MDA in needles of Pinus tabulaeformis seedlings are remarkably reduced by the combination of warming and nitrogen addition, but the combination only significantly decreased the rate of O2 - production of Picea asperata seedlings. Elevated temperature or nitrogen fertilization decrease the contents of P, Ca, Mg but increase Cu, Zn, Mn contents for Picea asperata seedlings. For Pinus tabulaeformis seedlings, elevated temperature alone and nitrogen fertilization alone decreased Ca, but increased P, Mg, Cu, Zn, Mn contents. The effects of the combination of warming and nitrogen addition on these element contents in needles of Picea asperata seedlings are added or multiplied the effects of warming and nitrogen addition alone, resulting in less contens of P, Ca, Mg and more contents of Cu, Zn, Mn than either elevated temperature or nitrogen fertilization. Howere, these adding or multipluing single-factor effects on contents of these elements are not observed in the case of Pinus tabulaeformis seedlings. In conclusion, growth parameters, photosynthetic capacities and antioxidant abilities of Picea tasperata and Pinus abulaeformis seedlings are improved by experimental warming or nitrogen fertilization. Interestingly, the positive effects of warming and nitrogen addition on growth and physiological performances are not multiplied by the combination of elevated temperature and nitrogen fertilization, even dempened for Picea asperata seedlings. However, for Pinus tabulaeformis seedlings, growth and physiological performances are further improved by the combination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

为了从分子水平对中国药用石斛及其混伪品进行鉴定,本文选取了核rDNA ITS 序列和叶绿体DNA 的matK 基因序列进行研究。采用改良的CTAB 法提取石斛的基因组DNA,PCR 产物直接测序法对17 种(共32 份)药用石斛的核糖体内转录间隔区ITS 全序列进行测定,克隆测序法对12 种(共22 份)药用石斛的叶绿体的matK 基因序列进行测定,运用BioEd it,MEGA4.0 等生物软件分析了石斛属植物的rDNA ITS 序列及叶绿体的matK 基因序列的特征,比较了石斛属间、种间、种内不同居群(品种)间的序列碱基差异及遗传距离,应用邻接法构建分子系统树。主要研究结果如下: (1)建立了17 种(共32 份)药用石斛rDNA ITS 区碱基全序列数据库,其中,ITS1 的长度为228~234 bp,GC 含量为45.7%~53.0%,变异位点167 个,占总位点67.34%,信息位点106 个,占总位点42.74%,ITS2 长度为241~247 bp,GC含量为44.8%~55.7%,变异位点165 个,占总位点66.27%,信息位点115 个,占总位点46.18%。 (2)建立了12 种(共22 份)药用石斛的叶绿体matK 基因全序列数据库,叶绿体matK 基因长1410 bp,变异位点51 个,信息位点11 个。除了存在碱基替换的遗传变异外,还存在碱基的插入和缺失。 (3)通过ITS 序列比较分析了各材料间的遗传距离和碱基差异,属间的遗传距离为0.295,石斛种间的平均遗传距离为0.142,碱基相差2~156 个,种内各居群间的平均遗传距离为0.002,碱基相差1~2 个。属间的遗传距离大于种间的遗传距离,种间的遗传距离大于种内不同居群(品种)间的遗传距离。 (4)根据分析石斛叶绿体的matK 基因序列得到,外类群(密花石豆兰)与石斛属间最小遗传距离为0.027,石斛种间的平均遗传距离为0.008,种间最大的遗传距离0.014, 最小的遗传距离为0.003,碱基相差8~20 个。种内不同居群(品种)遗传距离为0.001,相差1~5 个碱基。 (5)利用17 种石斛的全序列数据库及遗传分析软件,通过对待检种rDNA I TS区进行序列测定,成功地对10 个待检种进行了鉴定,并且在原植物开花后得到了验证。 (6)运用12 种石斛的matK 基因全序列数据库及遗传分析软件,成功地对4个待检种进行了鉴定,同样在原植物开花后得到了验证。 (7)本文利用石斛的核糖体内转录间隔区ITS 序列和叶绿体的matK 基因序列数据库分别构建了NJ 树,外类群与石斛属间石斛种间以及种内不同居群(品种)间均能在NJ 树中明显分化开来,二者构建的分子系统树一致,为石斛的分子鉴定提供了依据。 In order to identify Chinese Herba Dendrobii and its adulterant species on molecular level, we studied the sequences of rDNA ITS and chloroplast matK gene. Genomic DNA of Dendrobium was extracted using the modified cetyltrimethyl ammonium bromide (CTAB) method. The PCR products of the rDNA ITS sequences of Dendrobium (32 materia ls) were purified and then sequenced. The PCR products of chloroplast matK gene of Dendrobium (22 materia ls) were purified, cloned and then sequenced. The characteristic of the sequences and the genetic dista nce were compared between Bulbophyllum odoratissimum and Dendrobium, Dendrobium interspecies, and different populations. Phylogenetic trees were constructed using the NJ method by the biology softwares including BioEd it, MEGA4.0 etc. The ma in results as follows: (1) It was built up that the database of rDNA ITS sequences of 17 species of Herba Dendrobii (32 materia ls). The ITS1 was 228~234 bp, the GC content accounting for 45.7%~53.0%. Its variable sites were 167, accounting for 67.34%. The Parsim-Informative positions were 106, accounting for 42.74%. The ITS2 was 241~247 bp, the GC accounting for 44.8%~55.7%. The variable sites were 165, accounting for 66.27%. The Parsim-Informative positions were 115, accounting for 46.18%. (2) The database of the chloroplast matK gene sequences was built up, which contained 12 species of Herba Dendrobii (22 materia ls). The matK gene sequences were about 1410bp in length. There were 51 variable sites and 11 Parsim-Informative sites. And there were nucleotides insertions and deletions in some species , in addition to the nucleotides substitutions. (3) The rDNA ITS sequences were compared and analyzed by the biology softwares. The genetic dista nce between Bulbophyllum odoratissimum and Dendrobium was 0.295. The avera ge genetic dista nce was 0.142 between Dendrobium species, and there were 2~156 variable nucleotides. The avera ge genetic dista nce between different populations was 0.002, and there were 2~156 variable nucleotides. The genetic dista nce between Bulbophyllum odoratissimum and Dendrobium was greater tha n that of Denrobium interspecies. Meanwhile, the genetic dista nce between Denrobium species was also greater tha n that of different populations (variaties). (4) The characteristics of the chloroplast matK gene sequences were obtained after analyzing by the biology softwares. The minima l genetic dista nce was 0.027 between Bulbophyllum odoratissimum and Dendrobium . The ma xima l genetic dista nce was 0.014 between Dendrobium species, and there were 20 variable nucleotides. The minima l genetic dista nce between populations was 0.003, and there were 8 variable nucleotides.The genetic dista nce between populations was 0.001, and there were 1~5 variable nucleotides. (5) The molecular Phylogeny tree was constructed on the database of rDNA ITS the sequences of 17 species of Herba Dendrobii using the biology softwares. Then we authenticated 10 materia ls on molecular level. What’s more, they had been proved when these pla nts flowered. (6) The molecular Phylogeny tree was built up on the database of chloroplast matK gene sequences of 12 species of Herba Dendrobii with the biology softwares.Then 4 materia ls were authenticated on molecular level. Moreover, they had also been proved when these pla nts were in flower. (7) The Phylogenetic trees were separately constructed on the sequences of rDNA ITS and chloroplast matK gene B. odoratissimum and Dendrobium all could be distinguished on the Phylogenetic trees. Meanwhile, the Phylogenetic trees based on two groups of sequences were coincident. rDNA ITS and matK gene sequence could be used as molecular markers for authentication of Herba Dendrobii.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对15株白腐真菌进行了以玉米秸秆为基质的初步筛选,从中获得一株选择性系数较高的菌株Y10,并对其降解玉米秸秆的情况进行了研究。结果表明,在30天的培养过程中菌株Y10对玉米秸秆降解的选择性系数都大于1,第15天选择性系数最高为3.88。对未经降解和降解过的玉米秸秆分别作了紫外光谱和红外光谱分析,结果表明,经该菌降解后玉米秸秆的化学成分发生了很大变化,且木质素的降解程度要大于纤维素的降解程度。对菌株Y10进行了ITS-5.8S rDNA序列鉴定,初步判定其为Cerrena sp.。 为了考查不同的外源添加物对菌株Y10降解玉米秸秆的影响,在以玉米秸秆为基质的固态发酵培养基中分别添加了7种金属离子、8种碳源、6种氮源。结果显示,这7种金属离子均能促进木质素的降解,并且一定浓度的某些离子明显抑制纤维素的降解;其中添加0.036%的MnSO4·H2O和0.36%的MgSO4·7H2O对纤维素降解的抑制作用比较强,降解率分别为0.96%和1.31%,木质素的选择性系数分别达到了34.40和20.17。8种碳源中除麦芽糖外都能促进木质素的降解,除微晶纤维素外都明显促进纤维素的降解。6种氮源中酒石酸铵、硫酸铵、草酸铵和氯化铵的添加都会使该菌生长变慢,而且氮源浓度越高菌丝生长越慢。外加碳源和金属离子对半纤维素降解和选择性系数的影响不大。 同时对菌株Y10在液态培养下产木质素降解酶的条件和培养基做了优化。结果表明,在初始产酶培养基中,菌株Y10的漆酶酶活在第10d达到最高,锰过氧化物酶酶活在第11d达到最高,基本上检测不到木质素过氧化物酶。菌株Y10产漆酶的最适温度为32℃,最适PH为6.0;产锰过氧化物酶的最适温度为32℃,最适PH为6.5。菌株Y10产漆酶的最佳碳源为甘露糖,最佳氮源为酒石酸铵,最适诱导剂VA浓度为3 mmol/L,最适表面活性剂TW-80浓度为1%。 利用响应面法对其产漆酶的培养基进行优化,优化后的培养基配方为葡萄糖10.00 g/L,酒石酸铵0.50 g/L,大量元素296.50 ml/L,微量元素100.00 ml/L,NTA 1.40 g/L,VA 5.00 mmol/L,吐温-80加入量为0.10%。进行了菌株Y10产漆酶的验证实验,实测酶活为5282.56 U/L,与预测酶活5162.73 U/L接近。在优化后培养基中,菌株Y10在第14 d达到生长的最高峰,第20 d时,漆酶酶活最高,为11325.00 U/L;第16 d时,锰过氧化物酶酶活最高,为30.77 U/L。 对菌株Y10的漆酶酶学性质做了初步的研究,结果显示,酶反应的最适温度为40℃-65℃,最适PH为3.0。在40℃,PH=3.0时,漆酶催化ABTS反应的米氏方程为 。 Fifteen white-rot fungi based on corn stalk were screened. One white-rot fungus Y10 with high selectivity value was obtained. The degradation of corn stalk was initially studied. The results indicated that the selectivity value was above 1 during the 30 day-cultivation and the highest was 3.88 after 15 days. The composition of untreated and treated stalk was analyzed through ultraviolet spectroscopy and infrared spectroscopy. It was found that the composition of treated stalk was greatly altered and the degree of the degradation of lignin is greater than the cellulose. Y10 was identified as Cerrena sp. by ITS -5.8S rDNA sequence analysis. The influence of metal ions, carbon sources and nitrogen sources on corn stalk degradation by white-rot fungus was studied. While all seven metal ions could promote lignin degradation, the cellulose degradation was best inhibited at certain ion concentrations. Notably, when 0.036% MnSO4·H2O and 0.36% MgSO4·7H2O were added into the medium, the cellulose degradation was restrained to the extents that the coefficients of lignin selectivity rose to 34.40 and 20.17 respectively. It was also found that all carbon sources except maltose can promote lignin degradation. The addition of carbon sources other than microcrystalline cellulose significantly promoted cellulose degradation. The addition of the nitrogen sources, ammonium tartrate, ammonium sulfate, oxalate, ammonium chloride, resulted in remarkable inhibition to mycelium growth; the larger the concentrations of nitrogen sources are, the slower the mycelium grew. The addition of carbon sources and metal ions had less impact on the degradation of hemicellulose and selectivity value. Meanwhile, we optimized the conditions and culture medium of the lignin-degrading enzyme production of strain Y10. The results showed that in the initial culture medium, the Lac activity was highest at the 10th day, the MnP activity was highest at the 11th day and the LiP could not be detected. The optimum condition of Lac was at temperature 32 and PH =6.0 and the optimum condition of MnP was at temperature 32 and PH =6.5. The optimum carbon source for Lac was seminose, the optimum nitrogen source was ammonium tartrate, the optimum content of VA was 3 mmol/L, the optimum content of TW-80 was 1%. PB and RSM were used to optimize the culture medium of laccase by white-rot fungus Y10. The optimum culture medium was consist of glucose 10.00 g/L, ammonium tartrate 0.50 g/L, macro elements 296.50 ml/L, trace elements 100.00 ml/L, NTA 1.40 g/L, VA 5.00 mmol/L, TW-80 0.10%. Under the optimal conditions, the activity of laccase was 5282.56 U/L and the experimental value agreed with the predicted value 5162.73 U/L. The biomass was highest at the 14th day, the Lac activity was highest at the 20th day, the MnP activity was highest at the 16th day. The results of the studies on the characteristics of Lac showed that the optimum temperature for Lac activity is 40℃-65℃ ; the optimum PH for Lac activity is 3.0 and under 40℃,PH=3.0, the Michaelis-menten equation of Lac catalized ABTS oxidation was .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

猪场废水COD浓度高、氨氮浓度高、悬浮物浓度高,已成为农村面源污染的主要来源,并严重威胁到农村饮用水安全。猪场废水氨氮浓度高、处理难度大,如何采用经济高效的方法,去除氨氮使其达到排放标准,一直是猪场废水处理中面临的重要难题。 厌氧氨氧化是近年受到国内外水处理研究者广泛关注的新型生物脱氮技术,具有不需要外加有机碳源、节省供氧量、降低能耗等优点。虽然国内外研究者对厌氧氨氧化过程的脱氮机理、厌氧氨氧化菌的生理生化特性等进行了多方面的研究,但已有的报道大多以模拟废水为研究对象,以猪场废水为研究对象的报道,在国内外文献中极少有报导。 本论文以猪场废水为主要研究对象,考察了猪场废水的亚硝化过程、厌氧氨氧化的启动过程,并对亚硝化和厌氧氨氧化联合用于猪场废水脱氮进行了探索。 1.论文首先研究了猪场废水的亚硝化过程,考察了废水水质和主要运行条件对亚硝化过程的影响。实验表明:(1)亚硝化阶段反应时间为8到10h时,出水中氨氮和亚硝酸盐浓度比可达到1:1~1:1.23,满足厌氧氨氧化反应对二者比例的要求;达到前述要求时,氨氮去除率达到58.3~65.6 %,亚硝化率在整个过程均保持在97 %以上,COD去除率在59.2~68.6 %;(2)曝气量(溶解氧)对亚硝化过程影响显著,随着曝气量增大,达到厌氧氨氧化要求的氨氮与亚硝酸盐氮浓度比例所需水力停留时间τ越短,pH出现明显下降的时间越短;(3)τ对应的pH在7.8~8.1之间,无需进行pH调节即可满足厌氧氨氧化反应对pH的要求;(4)氨氮和COD降解过程遵循一级反应动力学,氨氮和COD降解的速率常数分别为0.0656~0.0724 1/h和0.0491~0.0664 1/h。 2.在进行亚硝化过程研究的同时,以模拟废水为试验对象,进行厌氧氨氧化启动研究。以反硝化污泥和养殖厂储水池厌氧底泥的混合污泥作为接种污泥,历时大约100天,培育出具有厌氧氨氧化活性的污泥,氨氮和亚硝酸盐氮最高进水浓度分别为223.8 mg/L和171.4 mg/L,去除率最高分别达48%和41.5%,此时二者消耗比例为1.33:1。 3.在猪场废水的亚硝化研究完成和厌氧氨氧化过程初步启动成功后,在模拟废水中逐步加入猪场废水的亚硝化处理出水,逐步实现亚硝化和厌氧氨氧化的组合。亚硝化出水添加到厌氧反应器后,厌氧氨氧化反应仍可继续进行,且去除效率逐步提高。研究发现添加的亚硝化出水中携带的亚硝化细菌在厌氧氨氧化菌膜外层生长并累积,增加了厌氧氨氧化反应基质的传质阻力,妨碍了厌氧氨氧化效率的提高。 4.亚硝化-厌氧氨氧化实际工程应用探索中,生物接触氧化池可在有效去除废水中的有机物的同时实现亚硝化,出水中氨氮和亚硝酸盐比例平均为1.10,可满足后续厌氧氨氧化的要求;在适宜的进水浓度和温度下,ABR池出现了厌氧氨氧化启动的迹象;研究同时发现,水质的波动和气温的变化是工程中影响厌氧氨氧化菌活性的重要因素。 论文的主要创新点在于:(1)以猪场废水为研究对象,以实现厌氧氨氧化为目标,对亚硝化过程进行了比较详细的考察,获得了亚硝化出水满足厌氧氨氧化要求的工艺条件,通过对其COD和氨氮降解过程的考察,得出亚硝化阶段COD降解和氨氮去除的动力学模型;(2)对亚硝化-厌氧氨氧化处理猪场废水进行了探索,确立了影响其污染物去除率稳定的重要因素。 论文的上述研究成果,为厌氧氨氧化技术的实用性研究提供理论依据。 Piggery wastewater, which is characterized by high concentration of COD、ammonium and suspend substance, has become a most important source of non-point source pollution and also severely threats drinking water security in rural area. How to discharge piggery wastewater with the ammonium concentration meeting standard by economical and effective method? This is the most urgent problem in piggery wastewater treatment. As a new biological nitrogen removal technology, Anammox process has been paid more and more attention by researchers all over the world. Anammox has advantages of no need of organic carbon addition, low oxygen consumption and energy consumption. Plenty of investigations have been carried out to the mechanism, physiological and biochemical characteristic of bacteria about Anammox. Most of researches focused on synthetic wastewater, there is rare report about its application in piggery wastewater. In this paper,experimental studies were performed to investigate Sharon process in treatment of piggery wastewater,the start up process of Annammox using synthetic wastewater were studied, the feasibility of applying Sharon-Anammox process in the nitrogen removal of piggery wastewater was evaluated. 1. Sharon process of piggery wastewater was firstly investigated to analyze the effects of water quality and main running parameters, which meet the NH4+-N to NO2--N ratio requirement of successive Anammox. Results showed: (1)During Sharon Process,after 8~10 hours’ reaction the NH4+-N to NO2--N ratio in effluent reached 1:1.0~1:1.23, when the removal percentage of NH4+-N was 58.3~65.6 %, a semi-nitration rate of above 97 % was achieved during the process; meanwhile 59.2~68.6 % of the COD was also removed. (2)The aeration rate(oxygen) had obvious effect on the hydraulic retention time(τ) which met the NH4+-N to NO2--N ratio requirement of Anammox. As aeration rate increased, the hydraulic retention time(τ) was shortened. (3) The pH corresponding to τ was between 7.8 and 8.1, thus it needed no artificial adjustment. (4) The reduction of ammonia and COD followed the first-order reaction kinetics. The velocity constants of ammonia and COD were 0.0656~0.0724 1/h and 0.0491~0.0664 1/h, respectively. 2. The startup of Anammox process using the artificial wastewater was performed simultaneously with Sharon. The aim was to investigate the running parameters of Anammox and make foundation for the combination stage. By using the mixture of denitrifying sludge and anaerobic sludge in tank of the breeding factory, sludge of Anammox activity was cultivated in UASB after 100 days. The removal percentage of NH4+-N and NO2-N were up to 48% and 41.5%, respectively, when the NH4+-N and NO2-N influent concentration were 223.8 mg/L and 171.4 mg/L, respectively, the NH4+-N and NO2-N removal rate was 1.33:1. 3. After investigation of Sharon and startup of Anammox, effluent of Sharon process was added into the synthetic wastewater to combine Sharon and Anammox step by step. It took some time after the addition of Sharon effluent that Anammox reaction continued and the removal rate kept increasing. It indicated that nitrifying bacteria were carried by the Sharon effluent cumulated in the outer layer of Anammox. This enhanced transfer resistance of Anammox reaction and the increasing removal rate was restrained. 4. In the bio-contact oxidation pond of practical project, Sharon process were carried out successfully and organic compounds were removed effectively. An average NO2-N/ NH4+-N rate of 1:1.0 was achieved in the effluent, which met the requirement of successive Anammox. Under condition of suitable influent concentration and temperature, there was evidence that Anammox could start up in ABR. The variety of wastewater and temperature had great affects on Anammox activity in practical engineering. Innovation of this paper: (1) The Sharon process for treating piggery wastewater was discussed in details. Technological parameters that met requirement of Anammox were obtained. The dynamic models of COD and ammonium removal in the process were educed. (2) Sharon-Ananmmox for treatment of piggery wastewater was investigated, and the primary influencing factors was studied. This paper could be a theoretical consult for research of Anammox utility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

畜禽废水是农村水环境污染的主要来源之一,其处理的难点在于脱氮。传统生物脱氮法具有能耗高、需大量外加碳源等缺点,开发低成本、高效率的新型生物脱氮技术具有重要意义。 本研究将短程硝化反硝化和厌氧氨氧化两种脱氮新技术结合,让前者为后者创造去除可降解COD、降低总氮负荷、调整pH、调整氨氮和亚硝酸盐氮浓度比例等进水条件,而后者可在无需外加碳源的条件下进一步脱氮,二者结合可成为高氨氮、低C/N废水脱氮的新途径。 试验以低碳氮比猪场废水为研究对象,首先进行了短程硝化反硝化预处理研究,同时启动并运行调控厌氧氨氧化反应器,最后以经过短程硝化反硝化预处理的猪场废水为进水,进行厌氧氨氧化脱氮考察。实验表明:(1)短程硝化反硝化作为厌氧氨氧化的预处理工序是可行的。猪场废水通过短程硝化反硝化,可以达到基本去除可生化COD、部分脱氮、控制出水氨氮和亚硝酸盐氮浓度之比在1︰1左右、pH在7.5~8.0的目的, COD和总氮平均去除率分别为64.3%、49.1%,出水可达到厌氧氨氧化反应的进水要求。(2)采用模拟废水启动厌氧氨氧化反应器,经过5个月左右的运行调控,反应器启动成功并稳定运行,最高总氮去除率为87.1%,总氮容积去除率最高达到0.14kg/m3.d;整个稳定阶段,氨氮、亚硝酸盐氮、硝酸盐氮的变化量之比为1︰1.21︰0.33。(3)经过短程硝化反硝化预处理的猪场废水厌氧氨氧化脱氮效果稳定,氨氮、亚硝酸盐氮、总氮、COD的平均去除率分别为93.0%、99.4%、84.6%、18.1%,处理效果与模拟废水处理系统相比无明显变化。(4)经过短程硝化反硝化预处理后,猪场废水中残留有机物成分在厌氧氨氧化反应过程中无显著变化,主要为酯类和烷烃类物质;残留有机物对厌氧氨氧化效果无明显影响。(5)采用PCR技术进行特殊功能菌种检测,结果表明模拟废水处理系统和猪场废水处理系统的菌群中均含有厌氧氨氧化菌和好氧硝化菌;通过blast比对,厌氧氨氧化菌扩增序列与未培养的Planctomycetales菌和Candidatus Brocadia fulgida菌16S rRNA部分序列相似性分别为95%、90%。(6)MPN法菌种计数结果显示,模拟废水处理系统和猪场废水处理系统的菌群中均含有硝化细菌、亚硝化细菌和少量反硝化菌,实验条件下的微生物系统是一个厌氧氨氧化菌与好氧硝化菌、反硝化菌共存的系统。 Poultry wastewater is one of the main source of water pollution in rural areas,and nitrogen removal is the most difficult part in treating poultry wastewater. There are some disadvantages in traditional nitrogen removal, such as high energy consumption and more additional organic carbon. It is important to develop ecolomical and efficient technologyies. Shortcut nitricfication/denitrification, as a pretreatment process, was combined with Anammox in this research, so that part of total nitrogen and most degradable COD could be removed by the former, and further nitrogen removal could be implemented by the latter. The combination of the two technologies was a new approach to treat wastewater with high ammonium and low C/N. Piggery wastewater with low C/N was treated in lab-scale experiment. Firstly, shortcut nitrification/denitrification was investigated, and Anammox reactor was started up successfully at the same time. Then piggery wastewater after pretreatment was treated by Anammox. The results showed :(1) It was feasible to take nitrification/denitrification as the pretreatment process of Anammox. By using this process, part of total nitrogen and COD were removed, the ratio of ammonium and nitrite reached around 1︰1 and the pH was about 7.8, which were favorable for Anammox. The average removal percentage of COD and total nitrogen were about 64.3% and 49.1%, respectively. (2) Simulated wastewater was used to start up Anammox reactor. The reactor was started up successfully within 5 months and stable performance was achieved. The highest nitrogen removal reached 87.1% and the biggest volumetric total nitrogen removal rate reached 0.14kg/m3.d. The average ratio of ammonium, nitrite and nitrate was 1:1.21:0.33. (3)Taking the effluent of shortcut nitrification/denitrification as the influent, the nitrogen removal efficiency of Anammox was stable, and the the average removal percentage of ammonium, nitrite, total nitrogen and COD were 93.0%, 99.4% , 84.6% and 18.1%, respectively, which had little difference with that by using simulated wastewater..(4) After pretreatment, the residual organic carbon in piggery wastewater showed no obvious change during the Anammox process, and the main organic compounds were saturated hydrocarbon and ester, which had no obvious negative effect on Anammox process.(5) By PCR technology, the existence of Anammox bacteria was confirmed and the aerobic nitrifying bacteria was found to coexist as well. The result of blast showed that the identities of Anammox bacterium to part of 16S rRNA sequence of uncultured Planctomycetales bacterium and Candidatus Brocadia fulgida bacterium were 95% and 90%, respectively.(6)By MPN method, nitrite oxidizer, ammonium oxidizer and denitrification bacteria were detected in both simulated and piggery wastewater treatment system of Anammox, and the microorganism system was composed of Anammox bacteria,aerobic bacteria and denitrification bacteria together.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

红发夫酵母分离于北美西部高山地区和日本一些岛屿上落叶树的渗出液中,因其所产主要色素为在水产养殖、食品和医药工业有广阔应用前景的虾青素而成为研究的热点。本论文对红发夫酵母Phaffia rhodozyma 的生长特性、培养参数与培养基组分对生长和虾青素积累的影响及其优化、虾青素合成的调节控制、虾青素的提取测定及红发夫酵母耐高温菌种的诱变进行了系统的研究。 虾青素是红发夫酵母的胞内色素,要对其进行分析首先要对红发夫酵母进行破壁处理,实验发现二甲亚砜是最有效的破壁溶剂,用氯仿和丙酮可以有效地把类胡萝卜素从二甲亚砜破壁后的红发夫酵母细胞中提取出来。 在固定摇床转速为200 rpm,温度为20 ℃的条件下,当种龄为36 h,以10%的接种量接入装液量为30 mL的250 mL三角瓶,初始pH为5.5时最有利于红发夫酵母的生长及类胡萝卜素的合成。 本实验中红发夫酵母最佳利用碳、氮源分别为蔗糖和蛋白胨,但蛋白胨价格昂贵,不适宜作单一氮源,因此使用硫酸铵和酵母膏作为复合氮源。 本论文采用了BP神经网络结合遗传算法的方法来优化红发夫酵母的发酵培养基,得到红发夫酵母发酵培养基的最佳配比为:蔗糖45.10 g/L、硫酸铵3.00 g/L、硫酸镁0.80 g/L、磷酸二氢钾1.40 g/L、酵母膏3.00 g/L、氯化钙0.50 g/L,使用优化后的培养基发酵类胡萝卜素产量达到8.20 mg/L,干重达到9.47 g/L,类胡萝卜素的产量比起始培养基提高了95.90%,干重提高了89.40%。 从代谢途径出发对红发夫酵母合成虾青素调控调控,选择谷氨酸、乙醇、VB1作为添加剂,通过正交试验设计得出三者添加水平分别为0.2 g/L,0.1% (V/V),10 mg/L时,类胡萝卜素产量提高了25.73%,达到了10.31mg/L。 通过上述优化培养,本论文中红发夫酵母的虾青素产量从1.33 mg/L提高到9.12 mg/L,产量提高了6.86倍;总类胡萝卜素产量从4.23 mg/L提高到10.31 mg/L,产量提高了2.44倍;细胞干重从5.00 g/L提高到11.35 g/L,提高了2.27倍,总体提高效果显著。 红发夫酵母属于中低温菌,本论文采用紫外复合诱变的方式,通过高温筛选,得到一株能在35 ℃下能生长的突变株,但所产类胡萝卜素中虾青素所占比例很小,可能是诱变改变了红发夫酵母的代谢途径,阻断了虾青素的合成。 Phaffia rhodozyma is a heterobasidiomyceteous yeast that was originally isolated from the slime fluxes of brich tree wounds in mountain regions of northern Japan and southern Alaska. Phaffia rhodozyma produces astaxanthin as its principal carotenoid pigment, which has potential applications in acquaculture, food and pharmaceutical industry. This paper researched ways to break cell, analysis of astaxanthin, characteristics of growth, culture parameters and the effects of components of medium on growth and astaxanthin formation , optimization of culture medium, control of astaxanthin synthesis and mutagenesis of Phaffia rhodozyma. It is necessary to disrupt the yeast cell for extracting astaxanthin considering the yeast accumulating carotenoids in cell. Dimethyisulphoxide was the most effective solvent for breaking the yeast cell; acetone and chloroform were effective to extract carotenoids out of the disrupted cell. The optimum pH for growth and carotenoids synthesis is 5.5, the optimum medium volume is 30 mL (in 250 mL flask), the optimum culture time of inoculum is 36 h, the optimum inoculum concentration is 10%. The research on culture medium showed: sucrose is the best one of 6 carbon sources for growth and astaxanthin synthesis. Peptone is the best nitrogen source for growth and astaxanthin synthesis. Uniform Design was used for trial design of the formula medium components, then back-propagation neural network was established to modeling the relationships between the carotenoid yield and the concentration of medium components. Genetic algorithm (GA) was used for global optimization of the model. The optimum combination of the medium was obtained: sucrose 45.10 g/L, ammonium sulfate 3.00 g/L, magnesium sulfate 0.80 g/L, potassium dihydrogen phosphate 1.40 g/L, yeast extract 3.00 g/L, calcium chloride 0.50 g/L. The yield of carotenoid reached 8.20 mg/L, which was 95.90% higher than that of the original medium. Glu, VB1 and ethanol were selected as fermentation addictives, after Orthogonal Test, the carotenoid contents increased by 25.73% when adding 0.16 g/L Glu, VB1 10 mg/L and ethanol 0.1% (V/V). After the above optimization, the astaxanthin content increased 6.86 folds, which is 9.12 mg/L. The carotenoids content increased 2.44 folds, which is 10.31 mg/L. The biomass increased 2.27 folds, which is 11.35 g/L. Phaffia rhodozyma grows in the mild temperature range of 0 to 27 ℃, in this work, a thermotolerant mutant was selected through UV-irradiation. It can grows at 35 ℃, and showed increased carotenoid content. The optimal growth temperature for this mutant is 30 ℃. But the mutant can only produce carotenoids with little astaxanthin accumulation.