977 resultados para American Society of Biological Chemists
Resumo:
Automotive manufacturers require improved part load engine performance to further improve fuel economy. For a swing vane VGS (Variable Geometry Stator) turbine this means a more closed stator vane, to deal with the low MFRs (Mass Flow Rates), high PRs (Pressure Ratios) and low rotor rotational speeds. During these conditions the turbine is operating at low velocity ratios. As more energy is available at high pressure ratios and during lower turbocharger rotational speeds, a turbine which is efficient at these conditions is desirable. Another key aspect for automotive manufacturers is engine responsiveness. High inertia designs result in “turbo lag” which means an increased time before the target boost pressure is reached. Therefore, designs with improved performance at low velocity ratios, reduced inertia or an increased swallowing capacity are the current targets for turbocharger manufacturers.
To try to meet these design targets a CFD (Computational Fluid Dynamics) study was performed on a turbine wheel using splitter blades. A number of parameters were investigated. These included splitter blade merdional length, blade number and blade angle distribution.
The numerical study was performed on a scaled automotive VGS. Three different stator vane positions have been analysed. A single passage CFD model was developed and used to provide information on the flow features affecting performance in both the stator vanes and turbine.
Following the CFD investigation the design with the best compromise in terms of performance, inertia and increased MFP (Mass Flow Parameter) was selected for manufacture and testing. Tests were performed on a scaled, low temperature turbine test rig. The aerodynamic flow path of the gas stand was the same as that investigated during the CFD. The test results revealed a design which had similar performance at the closed stator vane positions when compared to the baseline wheel. At the maximum MFR stator vane condition a drop of −0.6% pts in efficiency was seen. However, 5.5% increase in MFP was obtained with the additional benefit of a drop in rotor inertia of 3.7%, compared to the baseline wheel.
Resumo:
The fuel consumption of automotive vehicles has become a prime consideration to manufacturers and operators as fuel prices continue to rise steadily, and legislation governing toxic emissions becomes ever more strict. This is particularly true for bus operators as government fuel subsidies are cut or removed.
In an effort to reduce the fuel consumption of a diesel-electric hybrid bus, an exhaust recovery turbogenerator has been selected from a wide ranging literature review as the most appropriate method of recovering some of the wasted heat in the exhaust line. This paper examines the effect on fuel consumption of a turbogenerator applied to a 2.4-litre diesel engine.
A validated one-dimensional engine model created using Ricardo WAVE was used as a baseline, and was modified in subsequent models to include a turbogenerator downstream, and in series with, the turbocharger turbine. A fuel consumption map of the modified engine was produced, and an in-house simulation tool was then used to examine the fuel economy benefit delivered by the turbogenerator on a bus operating on various drive-cycles.
A parametric study is presented which examined the performance of turbogenerators of various size and power output. The operating strategy of the turbogenerator was also discussed with a view to maximising turbine efficiency at each operating point.
The performance of the existing turbocharger on the hybrid bus was also investigated; both the compressor and turbine were optimised and the subsequent benefits to the fuel consumption of the vehicle were shown.
The final configuration is then presented and the overall improvement in fuel economy of the hybrid bus was determined over various drive-cycles.
Resumo:
Single-Zone modelling is used to assess three 1D impeller loss model collections. An automotive turbocharger centrifugal compressor is used for evaluation. The individual 1D losses are presented relative to each other at three tip speeds to provide a visual description of each author’s perception of the relative importance of each loss. The losses are compared with their resulting prediction of pressure ratio and efficiency, which is further compared with test data; upon comparison, a combination of the 1D loss collections is identified as providing the best performance prediction. 3D CFD simulations have also been carried out for the same geometry using a single passage model. A method of extracting 1D losses from CFD is described and utilised to draw further comparisons with the 1D losses. A 1D scroll volute model has been added to the single passage CFD results; good agreement with the test data is achieved. Short-comings in the existing 1D loss models are identified as a result of the comparisons with 3D CFD losses. Further comparisons are drawn between the predicted 1D data, 3D CFD simulation results, and the test data using a nondimensional method to highlight where the current errors exist in the 1D prediction.
Resumo:
Several one-dimensional design methods have been used to predict the off-design performance of three modern centrifugal compressors for automotive turbocharging. The three methods used are single-zone, two-zone, and a more recent statistical method. The predicted results from each method are compared against empirical data taken from standard hot gas stand tests for each turbocharger. Each of the automotive turbochargers considered in this study have notably different geometries and are of varying application. Due to the non-adiabatic test conditions, the empirical data has been corrected for the effect of heat transfer to ensure comparability with the 1D models. Each method is evaluated for usability and accuracy in both pressure ratio and efficiency prediction. The paper presents an insight into the limitations of each of these models when applied to one-dimensional automotive turbocharger design, and proposes that a corrected single-zone modelling approach has the greatest potential for further development, whilst the statistical method could be immediately introduced to a design process where design variations are limited.
Resumo:
Turbogenerating is a form of turbocompounding whereby a Turbogenerator is placed in the exhaust stream of an internal combustion engine. The Turbogenerator converts a portion of the expelled energy in the exhaust gas into electricity which can then be used to supplement the crankshaft power. Previous investigations have shown how the addition of a Turbogenerator can increase the system efficiency by up to 9%. However, these investigations pertain to the engine system operating at one fixed engine speed. The purpose of this paper is to investigate how the system and in particular the Turbogenerator operate during engine speed transients. On turbocharged engines, turbocharger lag is an issue. With the addition of a Turbogenerator, these issues can be somewhat alleviated. This is done by altering the speed at which the Turbogenerator operates during the engine’s speed transient. During the transients, the Turbogenerator can be thought to act in a similar manner to a variable geometry turbine where its speed can cause a change in the turbocharger turbine’s pressure ratio. This paper shows that by adding a Turbogenerator to a turbocharged engine the transient performance can be enhanced. This enhancement is shown by comparing the turbogenerated engine to a similar turbocharged engine. When comparing the two engines, it can be seen that the addition of a Turbogenerator can reduce the time taken to reach full power by up to 7% whilst at the same time, improve overall efficiency by 7.1% during the engine speed transient.
Resumo:
Conventionally, radial turbines have almost exclusively used radially fibred blades. While issues of mechanical integrity are paramount, there may be opportunities for improving turbine efficiency through a 3D blade design without exceeding mechanical limits. Off-design performance and understanding of the secondary flow structures now plays a vital role in the design decisions made for automotive turbocharger turbines. Of particular interest is extracting more energy at high pressure ratios and lower rotational speeds. Operating in this region means the rotor will experience high values of positive incidence at the inlet. A CFD analysis has been carried out on a scaled automotive turbine utilizing a swing vane stator system. To date no open literature exists on the flow structures present in a standard VGT system. Investigations were carried out on a 90 mm diameter rotor with the stator vane at the maximum, minimum and 25% mass flow rate positions. In addition stator vane endwall clearance existed at the hub side. From investigation of the internal flow fields of the baseline rotor, a number of areas that could be optimized in the future with three dimensional blading were identified. The blade loading and tip leakage flow near inlet play a significant role in the flow development further downstream at all stator vane positions. It was found that tip leakage flow and flow separation at off-design conditions could be reduced by employing back swept blading and redistributing the blade loading. This could potentially reduce the extent of the secondary flow structures found in the present study.
Resumo:
This paper describes an investigation of various shroud bleed slot configurations of a centrifugal compressor using CFD with a manual multi-block structured grid generation method. The compressor under investigation is used in a turbocharger application for a heavy duty diesel engine of approximately 400hp. The baseline numerical model has been developed and validated against experimental performance measurements. The influence of the bleed slot flow field on a range of operating conditions between surge and choke has been analysed in detail. The impact of the returning bleed flow on the incidence at the impeller blade leading edge due to its mixing with the main through-flow has also been studied. From the baseline geometry, a number of modifications to the bleed slot width have been proposed, and a detailed comparison of the flow characteristics performed. The impact of slot variations on the inlet incidence angle has been investigated, highlighting the improvement in surge and choked flow capability. Along with this, the influence of the bleed slot on stabilizing the blade passage flow by the suction of the tip and over-tip vortex flow by the slot has been considered near surge.
Resumo:
After the development of a new single-zone meanline modelling technique, benchmarking of the technique and the modelling methods used during its development are presented. The new meanline model had been developed using the results of three automotive turbocharger centrifugal compressors, and single passage CFD models based on their geometry.
The target of the current study was to test the new meanline modelling method on two new centrifugal compressor stages, again from the automotive turbocharger variety. Furthermore the single passage CFD modelling method used in the previous study would be again employed here and also benchmarked.
The benchmarking was twofold; firstly test the overall performance prediction accuracy of the single-zone meanline model. Secondly, test the detailed performance estimation of the CFD model using detailed interstage static pressure tappings.
The final component of this study exposed the weaknesses in the current modelling methods used (explicitly during this study). The non-axisymmetric flow field at the leading and trailing edges for the two compressors was measured and is presented here for the complete compressor map, highlighting the distortion relative to the tongue.
Resumo:
An evaluation of existing 1-D vaneless diffuser design tools in the context of improving the off-design performance prediction of automotive turbocharger centrifugal compressors is described. A combination of extensive gas stand test data and single passage CFD simulations have been employed in order to permit evaluation of the different methods, allowing conclusions about the relative benefits and deficiencies of each of the different approaches to be determined. The vaneless diffuser itself has been isolated from the incumbent limitations in the accuracy of 1-D impeller modelling tools through development of a method to fully specify impeller exit conditions (in terms of mean quantities) using only standard test stand data with additional interstage static pressure measurements at the entrance to the diffuser. This method allowed a direct comparison between the test data and 1-D methods through sharing common inputs, thus achieving the aim of diffuser isolation.
Crucial to the accuracy of determining the performance of each of the vaneless diffuser configurations was the ability to quantify the presence and extent of the spanwise aerodynamic blockage present at the diffuser inlet section. A method to evaluate this critical parameter using CFD data is described herein, along with a correlation for blockage related to a new diffuser inlet flow parameter ⚡, equal to the quotient of the local flow coefficient and impeller tip speed Mach number. The resulting correlation permitted the variation of blockage with operating condition to be captured.
Resumo:
Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases.
Resumo:
The prenatal period is of critical importance in defining how individuals respond to their environment throughout life. Stress experienced by pregnant females has been shown to have detrimental effects on offspring biology in humans and a variety of other species. It also is becoming increasingly apparent that prenatal events can have important consequences for the behavior, health, and productivity of offspring in farmed species. Pregnant cattle may experience many potentially important stressors, for instance, relating to their social environment, housing system and physical environment, interactions with humans and husbandry procedures, and their state of health. We examined the available literature to provide a review of the implications of prenatal stress for offspring welfare in cattle. The long-term effects of dystocia on cattle offspring also are reviewed. To ensure a transparent and repeatable selection process, a systematic review approach was adopted. The research literature clearly demonstrates that prenatal stress and difficult births in beef and dairy cattle both have implications for offspring welfare and performance. Common husbandry practices, such as transport, were shown to influence offspring biology and the importance of environmental variables, including thermal stress and drought, also were highlighted. Maternal disease during pregnancy was shown to negatively impact offspring welfare. Moreover, dystocia-affected calves suffer increased mortality and morbidity, decreased transfer of passive immunity, and important physiological and behavioral changes. This review also identified considerable gaps in our knowledge and understanding of the effects of prenatal stress in cattle. © 2012 American Society of Animal Science. All rights reserved.