977 resultados para Algal Biodiesel
Resumo:
We investigated the effect of benthic substratum type (sand and rocks) and nutrient supply (N and P) on biofilm structure and heterotrophic metabolism in a field experiment in a forested Mediterranean stream (Fuirosos). Rock and sand colonization and biofilm formation was intensively studied for 44 d at two stream reaches: control and experimental (continuous addition of phosphate, ammonia, and nitrate). Structural (C, N, and polysaccharide content and bacterial and chlorophyll density) and metabolic biofilm parameters (b-glucosidase, peptidase, and phosphatase enzyme activities) were analyzed throughout the colonization process. The epilithic biofilm (grown on rocks) had a higher peptidase activity at the impacted reach, together with a higher algal and bacterial biomass. The positive relationship between the peptidase activity per cell and the N content of the epilithic biofilm suggested that heterotrophic utilization of proteinaceous compounds from within the biofilm was occurring. In contrast, nutrient addition caused the epipsammic biofilm (grown on sand) to exhibit lower b-glucosidase and phosphatase activities, without a significant increase in bacterial and algal biomass. The differential response to nutrient addition was related to different structural characteristics within each biofilm. The epipsammic biofilm had a constant and high C:N ratio (22.7) throughout the colonization. The epilithic biofilm had a higher C:N ratio at the beginning of the colonization (43.2) and evolved toward a more complex structure (high polysaccharide content and low C:N ratio) during later stages. The epipsammic biofilm was a site for the accumulation and degradation of organic matter: polysaccharides and organic phosphorus compounds had higher degradation activities
Resumo:
We assessed the effects of nutrient enrichment on three stream ecosystems running through distinct biomes (Mediterranean, Pampean and Andean). We increased the concentrations of N and P in the stream water 1.6–4-fold following a before–after control–impact paired series (BACIPS) design in each stream, and evaluated changes in the biomass of bacteria, primary producers, invertebrates and fish in the enriched (E) versus control (C) reaches after nutrient addition through a predictive-BACIPS approach. The treatment produced variable biomass responses (2–77% of explained variance) among biological communities and streams. The greatest biomass response was observed for algae in the Andean stream (77% of the variance), although fish also showed important biomass responses (about 9–48%). The strongest biomass response to enrichment (77% in all biological compartments) was found in the Andean stream. The magnitude and seasonality of biomass responses to enrichment were highly site specific, often depending on the basal nutrient concentration and on windows of ecological opportunity (periods when environmental constraints other than nutrients do not limit biomass growth). The Pampean stream, with high basal nutrient concentrations, showed a weak response to enrichment (except for invertebrates), whereas the greater responses of Andean stream communities were presumably favored by wider windows of ecological opportunity in comparison to those from the Mediterranean stream. Despite variation among sites, enrichment globally stimulated the algal-based food webs (algae and invertebrate grazers) but not the detritus-based food webs (bacteria and invertebrate shredders). This study shows that nutrient enrichment tends to globally enhance the biomass of stream biological assemblages, but that its magnitude and extent within the food web are complex and are strongly determined by environmental factors and ecosystem structure
Resumo:
Hydrological disturbances, light availability and nutrients are the most relevant factors determining the structure of the biological communities in Mediterranean rivers. While some hydrological disturbances are able to induce catastrophic effects, which may cause a complete reset in physical and biological conditions, continued enrichment or changes in light availability are factors leading to the progressive shift in the communities of autotrophs and heterotrophs in the systems. Primary production in Mediterranean streams shows relevant seasonal changes which mainly follows the variations in light availability. In most forested streams, the algal community is shade-adapted. Nutrient enrichment (especially phosphorus) leads to marked increases in primary production, but this increase is not lineal and there is a saturation of algal biomass even in the most enriched systems. The heterotrophs (bacteria, fungi) are related to the pattern of DOC availability (which most depends on the seasonal discharge and leaf fall dynamics) and to the available substrata in the stream. It has been repeatedly observed that shorttime increases of extracellular enzyme activities are related to the accumulation of autochthonous (algal) and/or allochthonous (leaves) organic matter on the streambed during spring and summer, this being more remarkable in dry than in wetter years. Flow reduction favours detritus concentration in pools, and the subsequent increase in the density and biomass of the macroinvertebrate community. In Mediterranean streams collectors are accounting for the highest density and biomass, this being more remarkable in the least permanent systems, in accordance with the effect of floods on the organic matter availability. Nutrients, through the effect on the primary producers, also affect the trophic food web in the streams by favouring the predominance of grazers
Resumo:
Among increasingly used pharmaceutical products, β-blockers have been commonly reported at low concentrations in rivers and littoral waters of Europe and North America. Little is known about the toxicity of these chemicals in freshwater ecosystems while their presence may lead to chronic pollution. Hence, in this study the acute toxicity of 3 β-blockers: metoprolol, propranolol and atenolol on fluvial biofilms was assessed by using several biomarkers. Some were indicative of potential alterations in biofilm algae (photosynthetic efficiency), and others in biofilm bacteria (peptidase activity, bacterial mortality). Propranolol was the most toxic β-blocker, mostly affecting the algal photosynthetic process. The exposure to 531 μg/L of propranolol caused 85% of inhibition of photosynthesis after 24 h. Metoprolol was particularly toxic for bacteria. Though estimated No-Effect Concentrations (NEC) were similar to environmental concentrations, higher concentrations of the toxic (503 μg/L metoprolol) caused an increase of 50% in bacterial mortality. Atenolol was the least toxic of the three tested β-blockers. Effects superior to 50% were only observed at very high concentration (707 mg/L). Higher toxicity of metoprolol and propranolol might be due to better absorption within biofilms of these two chemicals. Since β-blockers are mainly found in mixtures in rivers, their differential toxicity could have potential relevant consequences on the interactions between algae and bacteria within river biofilms
Resumo:
Brazilian chemical industries face several problems regarding Research, Development and Innovation (RDI). The present paper shows that simple cooperation between chemical industries and university laboratories can be a way to overcome some of the present difficulties. The work carried out at LABOCAT has several industrial interfaces. It involves, among other areas of RDI, the development of anti-HIV-protease (and other virus-related-protease) drugs, the establishment of new (industrial) chemical processes and the implementation of industrial (biodiesel and related) plants. A model based on the present so called RHAE programme is proposed in which, parallel to the fellowship awards of this programme, financing participation of Brazilian Agencies would cover process development.
Resumo:
This study considered the current situation of solid and liquid biomass fuels in Finland. The fact that industry consumes more than half of the total primary energy, widely applied combined heat and power production and a high share of solid biomass fuels in the total energy consumption are specific to the Finnish energy system. Wood is the most important source of bioenergy in Finland, representing 20% of the total energy consumption in 2007. Almost 80% of the woodbased energy is recovered from industrial by-products and residues. As a member of the European Union, Finland has committed itself to the Union’s climate and energy targets, such as reducing its overall emissions of green house gases to at least 20% below 1990 levels by 2020, and increasing the share of renewable energy in the gross final consumption. The renewable energy target approved for Finland is 38%. The present National Climate and Energy Strategy was introduced in November 2008. The strategy covers climate and energy policy measures up to 2020, and in brief thereafter, up to 2050. In recent years, the actual emissions have exceeded the Kyoto commitment and the trend of emissions is on the increase. In 2007, the share of renewable energy in the gross final energy consumption was approximately 25% (360 PJ). Without new energy policy measures, the final consumption of renewable energy would increase to 380 PJ, which would be approximately only 31% of the final energy consumption. In addition, green house gas emissions would exceed the 1990 levels by 20%. Meeting the targets will need the adoption of more active energy policy measures in coming years. The international trade of biomass fuels has a substantial importance for the utilisation of bioenergy in Finland. In 2007, the total international trading of solid and liquid biomass fuels was approximately 77 PJ, of which import was 62 PJ. Most of the import is indirect and takes place within the forest industry’s raw wood imports. In 2007, as much as 21% of wood energy was based on foreign-origin wood. Wood pellets and tall oil form the majority of export streams of biomass fuels. The indirect import of wood fuels peaked in 2006 to 61 PJ. The foreseeable decline in raw wood import to Finland will decrease the indirect import of wood fuels. In 2004– 2007, the direct trade of solid and liquid biomass fuels has been on a moderate growth path. In 2007, the import of palm oil and export of bio-diesel emerged, as a large, 170 000 t/yr biodiesel plant came into operation in Porvoo.
Transesterificação de óleos vegetais: caracterização por cromatografia em camada delgada e densidade
Resumo:
We studied the transesterification of two vegetable oils: soybean and waste frying oil. The main problem of transesterification is related to the measurement of the ethyl ester content. In this work we used a quick analytical method for assessing the ethyl ester fraction of the purified fuel-grade transesterification products by applying a simple correlation with density. If the ester content is higher than 85% by weight the correlation allows the determination by a single density measurement. This method is suitable for control and determines the ethyl ester quickly and simply.
Resumo:
Biomass was the dominating source of energy for human activities until the middle 19th century, when coal, oil, gas and other energy sources became increasingly important but it still represents ca. 10% of the worldwide energy supply. The major part of biomass for energy is still "traditional biomass" used as wood and coal extracted from native forests and thus non-sustainable, used with low efficiency for cooking and home heating, causing pollution problems. This use is largely done in rural areas and it is usually not supported by trading activities. There is now a strong trend to the modernization of biomass use, especially making alcohol from sugar cane thus replacing gasoline, or biodiesel to replace Diesel oil, beyond the production of electricity and vegetable coal using wood from planted forests. As recently as in 2004, sustainable "modern biomass" represented 2% of worldwide energy consumption. This article discusses the perspectives of the "first" and "second" technology generations for liquid fuel production, as well as biomass gaseification to make electricity or syngas that is in turn used in the Fischer-Tropsch process.
Resumo:
Periodically, during petroleum shortage, fatty acids and their derivatives have been used as alternative fuels to those derived from petroleum. Different approaches have been proposed, including the use of neat fats and oils or their derivatives. Indeed, the utilization of biodiesel produced by alcoholysis of triacilglycerides or esterification of fatty acids, or hydrocarbons obtained from cracking of fatty materials were studied and used in several countries. Increasing concerns about energy security and climate changes have lead several countries, including Brazil, to start up biofuels programs. Different technologies are currently being developed in order to produce biofuels with economical feasibility. In this work are discussed alternative fatty raw-materials and processing technologies that are currently being studied in order to produce fuels suitable to sustainable substitute diesel fuel.
Resumo:
Fuels and biofuels have a major importance in the transportation sector of any country, contributing to their economic development. The utilization of these fuels implies their closer contact to metallic materials, which comprise vehicle, storage, and transportation systems. Thus, metallic corrosion could be related to fuels and biofuels utilization. Specially, the corrosion associated to gasoline, ethanol, diesel, biodiesel, and their mixtures is discussed in this article. Briefly, the ethanol is the most corrosive and gasoline the least. Few investigations about the effect of biodiesel indicate that the corrosion is associated to their unsaturation degree and the corrosion of diesel is related to its acidity.
Resumo:
Fatty acids, alcohols and sterols were considered as markers of the source and distribution of particulate organic matter during the dry season in the Mundaú-Manguaba estuarine-lagoon system, NE Brazil. Lipid composition showed an overwhelming influence of autochthonous sources of organic matter in all system´s compartments, including the probable occurrence of algal blooms in specific areas. On the other hand, contamination by sewage was restricted to Mundaú lagoon. This scenario differed from known conditions observed in the wet season, illustrating the usefulness of the lipid biomarker approach for the characterization of other complex and dynamic systems in the Brazilian coastal zone.
Resumo:
Case studies were used as teaching methodology in Chemistry teacher education. The reffered methodology consists of teaching principles of Physical Chemistry associated to biodiesel theme in an undergraduate chemistry course with pre-service teachers, who are temporary teachers in high schools in Fortaleza, Ceará, Brazil. The results showed that the methodology was well accepted by the pre-service teachers. The concepts related to Chemistry, by means of multidisciplinary science, technological and social approaches make it able to overcome and improve the present situation in public schools and provided the learning of the chemistry concepts by high school students.
Resumo:
Presently glycerol is considered a co-product of biodiesel industry. As the biodiesel production is exponentially increasing, glycerol generated from the transesterification of vegetable oils and fats is also being produced on a large scale, and turned out to be essential seeking for novel alternatives to the consumption of the extra volume, in crude and/or as derivatives high added value. This review mainly deals with chemical and enzymatic transformations of glycerol to obtain chiral building blocks for synthesis of pharmaceuticals and natural products.
Resumo:
Total spectrofluorimetry associated to Principal Components Analysis (PCA) were used to classify into different groups the samples of diesel oil, biodiesel, vegetal oil and residual oil, as well as, to identify addition of non-transesterified residual vegetable oil, instead of biodiesel, to the diesel oil. Using this method, the samples of diesel oil, mixtures of biodiesel in diesel and mixtures of residual oil in diesel were separated into well-defined groups.
Resumo:
Direct infusion electrospray ionization mass spectrometry in the negative ion mode, ESI(-)-MS and Fourier transform infrared spectroscopy (FTIR) were used together with partial least squares (PLS) as a tool to determine B3 adulteration (B3 - mixture of 3% v/v of biodiesel in diesel) with kerosene and residual oil.